Abstract:
According to the present invention, when a semiconductor element having protruding electrodes formed thereon is connected to a circuit board via conductive resin, stable connection is made even when an electrode pitch is small on the semiconductor element. On semiconductor element package regions on the circuit board, a paste electrode material containing photopolymerizable materials is printed to form a film having a prescribed thickness, and this electrode material film is baked after exposure and development thereof so as to obtain circuit electrodes having edges warped in a direction of going apart from the circuit board surface. Then, the protruding electrodes and the concave surfaces of the circuit electrodes are brought in abutment with each other and connected via the conductive resin which surrounds the abutments between the respective electrodes and is held on the concave surfaces of the circuit electrodes. With this arrangement, the concave surfaces of the circuit electrodes act as saucers and prevent the conductive resin from being squeezed out, thereby eliminating possible occurrence of short circuits.
Abstract:
An object of the present invention is to manufacture a bump-attached wiring circuit board with which stable bump connections are possible, and there is no need for bothersome operations such as plating pretreatments. A bump formation etching mask (7) is formed on the bump formation side (3a) of a metal foil (3) having a thickness (t1+t2) equal to the sum of the thickness t1 of a wiring circuit (1) and the height t2 of the bumps (2) to be formed on a wiring circuit (1), the bumps (2) are formed by half-etching the metal foil (3) from the bump formation etching mask (7) side down to a depth corresponding to a predetermined bump height t2, and a metal thin film layer (10) composed of a different metal from the metal foil (3) is formed on the bump formation side of the metal foil (3), thereby providing a bump-attached wiring circuit board with which stable bump connections are possible, and there is no need for bothersome operations such as plating pretreatments.
Abstract:
On a glass substrate of a liquid crystal display device, electrode parts to which metallic electrodes (bumps) of an IC circuit are connected from an upper part are formed. The electrode parts are formed by opening an interlayer dielectric film at parts corresponding to metal wiring and forming land shaped electrode pads in the opening parts. In this invention, the planar forms of the electrode pads are smaller than the opening parts of the interlayer dielectric film. Thus, the planarization of the peripheral surfaces around the electrode parts is improved. Accordingly, integrated circuit devices (IC) or semiconductor chips can be connected with high reliability.
Abstract:
A bumped semiconductor device contact structure is disclosed including at least one non-planar contact pad having a plurality of projections extending therefrom for contacting at least one solder ball of a bumped integrated circuit (IC) device, such as a bumped die and a bumped packaged IC device. The projections are arranged to make electrical contact with the solder balls of a bumped IC device without substantially deforming the solder ball. Accordingly, reflow of solder balls to reform the solder balls is not necessary with the contact pad of the present invention. Such a contact pad may be provided on various testing equipment such as probes and the like and may be used for both temporary and permanent connections. Also disclosed is an improved method of forming the contact pads by etching and deposition.
Abstract:
A microelectronic spring contact for making electrical contact between a device and a mating substrate and method of making the same are disclosed. The spring contact has a compliant pad adhered to a substrate of the device and spaced apart from a terminal of the device. The compliant pad has a base adhered to the substrate, and side surfaces extending away from the substrate and tapering to a smaller end area distal from the substrate. A trace extends from the terminal of the device over the compliant pad to its end area. At least a portion of the compliant pad end area is covered by the trace, and a portion of the trace that is over the compliant pad is supported by the compliant pad. A horizontal microelectronic spring contact and method of making the same are also disclosed. The horizontal spring contact has a rigid trace attached at a first end to a terminal of a substrate. The trace is free from attachment at its second end, and extends from the terminal in a direction substantially parallel to a surface of the substrate to the second end. At least a distal portion of the trace extending to the second end is spaced apart from the surface of the substrate. The spaced-apart distal portion is flexible in a plane parallel to the substrate.
Abstract:
Methods for fabricating Land Grid Array (LGA) interposer contacts that are both conducting and elastic. Also provided are LGA interposer contacts as produced by the inventive methods. Provided is LGA type which utilizes a pure unfilled elastomer button core that is covered with an electrically-conductive material that is continuous from the top surface to the bottom surface of the button structure. In order to obviate the disadvantages and drawbacks which are presently encountered in the technology pertaining to the fabrication and structure of land grid arrays using electrically-conductive interposer contacts, there is provided both methods and structure for molding elastomer buttons into premetallized LGA carrier sheets, and wherein the non-conductive elastomer buttons are surface-metallized in order to convert them into conductive electrical contacts.
Abstract:
A composite flexible wiring board comprises a first flexible wiring board and a second flexible wiring board on which a surface-mounted part is provided. The second flexible wiring board is disposed on the first flexible wiring board in its predetermined area. The first flexible wiring board and the second flexible wiring board are electrically connected to each other through an interlayer contact portion provided in a predetermined position. The first flexible wiring board has an input terminal region and an output terminal region with a power IC chip mounted on the first flexible wiring board.
Abstract:
A LCD device includes external terminals for metallic interconnects in a peripheral area on which TCPs are mounted. The external terminal includes a first ITO film connected to the metallic interconnect, a second ITO film formed on the first ITO film and a plurality of insulator islands sandwiched between the first ITO film and the second ITO film. The surface of the second ITO film has convex and concave portions whereby electric connection between the terminal of the TCP and the second ITO film is improved.
Abstract:
An interconnect pad is made to have a convex shape which is a shape that has been found to useful in improving the reliability of solder joints. A seed pillar is formed by plating over a metal layer. This seed pillar is smaller than the intended size of the interconnect pad. After formation of this small seed pillar, a plating step is performed over the pillar that forms the desired convex shape for the interconnect pad.
Abstract:
A method of electrically connecting a wiring member to a plurality of electrodes which respectively correspond to a plurality of recording elements of a recording head, the wiring member including a plurality of wire portions and a plurality of terminal portions each of which is connected to the corresponding wire portion, the method including: forming convex bumps by using a conductive solder, respectively on the plurality of terminal portions; and connecting the plurality of terminal portions and the plurality of electrodes respectively to one another via the respective convex bumps by heating and melting the convex bumps at a predetermined temperature with the convex bumps pressed respectively onto the plurality of electrodes with a predetermined load, wherein the connecting the plurality of terminal portions and the plurality of electrodes is carried out such that the predetermined load and the predetermined temperature are decreased with an increase in a height of the convex bumps.