Abstract:
A multilayered structure forming method includes disposing a dummy post on a first insulating pattern as a first inkjet process, disposing a second insulating pattern on the first insulating pattern as a second inkjet process so as to allow the second insulating pattern to surround a side surface of the dummy post, and disposing a first conductive pattern on the second insulating pattern a third inkjet process so as to connect the first conductive pattern to the dummy post. In this method, the first inkjet process includes a process for ejecting a functional liquid containing a first conductive material having high adhesiveness to the first conductive pattern onto the first insulating pattern.
Abstract:
A method for manufacturing a modular electrical circuit includes the steps of pre-manufacturing a plurality of components having fine features such as resistors, capacitors, inductances, and conductors formed on a dielectric substrate. The pre-manufactured components are laminated each to the other in a predetermined order. Each pre-manufactured component includes one or more electrical elements of the same type coupled each to the other by conducting lines. Each dielectric substrate includes through vias filled with the conductive material which serve for cross-coupling of the elements of neighboring components. Position of the passive elements, as well as conductive lines and through vias, are pre-designed to allow precise coordination between the elements of different components in the multi-layered modular electrical circuit.
Abstract:
A printed circuit board having embedded capacitors includes a double-sided copper-clad laminate including first circuit layers formed in the outer layers thereof, the first circuit layers including bottom electrodes and circuit patterns; dielectric layers formed by depositing alumina films on the first circuit layers by atomic layer deposition; second circuit layers formed on the dielectric layers and including top electrodes and circuit patterns; one-sided copper-clad laminates formed on the second circuit layers; blind via-holes and through-holes formed in predetermined portions of the one-sided copper-clad laminates; and plating layers formed in the blind via-holes and the through-holes. The manufacturing method of the printed circuit board is also disclosed.
Abstract:
There is provided a method for manufacturing a flat printed wiring board in which spaces between circuit patterns are filled with a resin. The method comprises: laminating via a mold release film a plurality of sets of laminated bodies formed by superposing a semi-cured resin sheet on a printed wiring board with circuit patterns formed thereon; placing the laminated plural sets of the laminated bodies interposed between a pair of smoothing plates and collectively pressing the laminated bodies in a reduced pressure atmosphere used for curing the resin; and then polishing the cured resin covering the circuit patterns, thereby exposing the circuit patterns.
Abstract:
A packaging substrate without plating bar and a method of forming the same is provided. A substrate is firstly provided with circuit patterns formed thereon. Then, solder masks are formed to define connecting points on the circuit patterns. Afterward, the openings of the solder mask on a bottom surface of the substrate are filled with solder material. Thereafter, a seed layer is formed on the bottom surface of the solder mask and the solder material, and then a passivation layer is formed on a surface of the seed layer. Finally, a plating process is carried out by using the seed layer to input cathode electric level to form metal pads on the defined connecting points on the upper surface of the substrate.
Abstract:
According to this invention, a wiring board includes a conductive pattern formed from leads each of which is formed on an organic layer and has a thickness t larger than a width W.
Abstract:
Disclosed is a PCB including embedded capacitors and a method of fabricating the same. A dielectric layer is formed using a ceramic material having a high capacitance, thereby assuring that the capacitors each have a high dielectric constant corresponding to the capacitance of a decoupling chip capacitor.
Abstract:
A mounted circuit substrate has at least one conductive layer. The side faces of a component mounting pad is formed on a surface of the substrate, and includes at least a columnar pattern made of a metal highly resistant to erosion by solder. The side faces of the component mounting pad are completely covered with an organic insulating layer. Therefore, the component mounting pad can withstand molten solder stresses accompanying component replacement even when component replacement is done many times.
Abstract:
The invention relates to an electronic assembly, in particular for low power consumption electric switching devices such as low power contactors, time relays or the like. In order to provide protection against input current pulses, an ohmic resistor (6) is provided in the form of a resistive layer that is applied by pressing.
Abstract:
A hole plugging method for a printed circuit board, a hole plugging device in accordance therewith and a manufacturing method in accordance therewith where a mask for selectively exposing a via hole, a through hole and a surface pattern of the printed circuit board is positioned on the board having the via hole and the through hole to electrically connect circuit patterns formed on the surface of the board and in the board and an insulating material is plugged in the via hole by abutting and pushing the material on the surface of the board. Therefore, the insulating material can be plugged smoothly without a void, the processing is simplified by plugging the insulating material just to the height of the circuit pattern in a space between the circuit patterns and accordingly, damage to the circuit pattern can be prevented.