Abstract:
Trilayered Beam MEMS Device and Related Methods. According to one embodiment, a method for fabricating a trilayered beam is provided. The method can include depositing a sacrificial layer on a substrate and depositing a first conductive layer on the sacrificial layer. The method can also include forming a first conductive microstructure by removing a portion of the first conductive layer. Furthermore, the method can include depositing a structural layer on the first conductive microstructure, the sacrificial layer, and the substrate and forming a via through the structural layer to the first conductive microstructure. Still furthermore, the method can include the following: depositing a second conductive layer on the structural layer and in the via; forming a second conductive microstructure by removing a portion of the second conductive layer, wherein the second conductive microstructure electrically communicates with the first conductive microstructure through the via; and removing a sufficient amount of the sacrificial layer so as to separate the first conductive microstructure from the substrate, wherein the structural layer is supported by the substrate at a first end and is freely suspended above the substrate at an opposing second end.
Abstract:
MEMS Device Having A Trilayered Beam And Related Methods. According to one embodiment, a movable, trilayered microcomponent suspended over a substrate is provided and includes a first electrically conductive layer patterned to define a movable electrode. The first metal layer is separated from the substrate by a gap. The microcomponent further includes a dielectric layer formed on the first metal layer and having an end fixed with respect to the substrate. Furthermore, the microcomponent includes a second electrically conductive layer formed on the dielectric layer and patterned to define an electrode interconnect for electrically communicating with the movable electrode.
Abstract:
A pressure transducer system includes a housing with a chamber, a member with a stored electrical charge, and a pair of electrodes that are at least partially in alignment with each other. At least a portion of the chamber is at a reference pressure. The member is connected to the housing and extends across at least a portion of the chamber. Each of the pair of electrodes is connected to the housing and is spaced from and on substantially opposing sides of the member. The member is movable with respect to the pair of electrodes or one of the pair of electrodes is movable with respect to the member in response to a monitored pressure.
Abstract:
The present invention discloses an electro-optical device support on a substrate. The electro-optical device includes a sacrificial layer disposed on the substrate having a chamber-wall region surrounding and defining an optical chamber. The electro-optical device further includes a membrane layer disposed on top of the sacrificial layer having a chamber-removal opening surrounding and defining an electric tunable membrane for transmitting an optical signal therethrough. The electrically tunable membrane disposed on top of the optical chamber surrounded by the chamber wall regions. The chamber-wall region is doped with iondopants for maintaining the chamber-wall region for removal-resistance under a chamber-forming process performed through the chamber-removal opening. In a preferred embodiment, the chamber-wall region is a doped silicon dioxide region with carbon or nitrogen. In another preferred embodiment, the chamber-wall region is a nitrogen ion-doped SiNxOy region. In another preferred embodiment, the optical chamber is an etched chamber formed by etching through the chamber removal opening for etching off an etch-enhanced region surrounded by an etch-resistant region constituting the chamber wall.
Abstract translation:本发明公开了一种在基片上的电光装置支架。 电光装置包括设置在基板上的牺牲层,其具有围绕并限定光学室的室壁区域。 电光装置还包括设置在牺牲层顶部的膜层,其具有围绕并限定用于透射光信号的电可调膜的室去除开口。 设置在由室壁区域围绕的光学室的顶部上的电可调膜。 在室壁区域掺杂有离子掺杂剂,用于在通过室去除开口进行的室形成过程中保持室壁区域用于去除电阻。 在优选实施例中,室壁区域是具有碳或氮的掺杂二氧化硅区域。 在另一个优选的实施方案中,室壁区域是氮离子掺杂的SiN x O y区域。 在另一个优选实施例中,光学室是通过蚀刻通过室去除开口形成的蚀刻室,用于蚀刻由构成室壁的耐蚀刻区域围绕的蚀刻增强区域。
Abstract:
A micromechanical component and method for its manufacture, in particular an acceleration sensor or a rotational speed sensor, includes: function components suspended movably above a substrate; a first insulation layer provided above the substrate; a first micromechanical function layer including conductor regions provided above the first insulation layer; a second insulation layer provided above the conductor regions and above the first insulation layer; a third insulation layer provided above the second insulation layer; a second micromechanical function layer including first and second trenches provided above the third insulation layer, the second trenches extending to the third insulation layer above the conductor regions and the first trenches extending to a cavity beneath the movably suspended function components in the second micromechanical function layer.
Abstract:
Process for fabricating electronic components, of the variable capacitor or microswitch type, comprising a fixed plate (1) and a deformable membrane (20) which are located opposite each other, which comprises the following steps, consisting in: depositing a first metal layer on an oxide layer (2), said first metal layer being intended to form the fixed plate; depositing a metal ribbon (10, 11) on at least part of the periphery and on each side of the fixed plate (1), said ribbon being intended to serve as a spacer between the fixed plate (1) and the deformable membrane (20); depositing a sacrificial resin layer (15) over at least the area of said fixed plate (1); generating, by lithography, a plurality of wells in the surface of said sacrificial resin layer; depositing, by electrolysis, inside the wells formed in the sacrificial resin (15), at least one metal region intended to form the deformable membrane (20), this metal region extending between sections of the metal ribbon (10, 11) which are located on each side of said fixed plate (1); removing the sacrificial resin layer (15).
Abstract:
A method for fabricating micromechanical components, which provides for depositing one or a plurality of sacrificial layers on a silicon substrate and, thereon, a silicon layer. In subsequent method steps, a structure is patterned out of the silicon layer, and the sacrificial layer is removed, at least under one section of the structure. The silicon layer is doped by an implantation process.
Abstract:
A movable mass forming a seismic mass is formed starting from an epitaxial layer and is covered by a weighting region of tungsten which has high density. To manufacture the mass, buried conductive regions are formed in the substrate. Then, at the same time, a sacrificial region is formed in the zone where the movable mass is to be formed and oxide insulating regions are formed on the buried conductive regions so as to partially cover them. An epitaxial layer is then grown, using a nucleus region. A tungsten layer is deposited and defined and, using a silicon carbide layer as mask, the suspended structure is defined. Finally, the sacrificial region is removed, forming an air gap.
Abstract:
The present invention is directed to a process for fabricating a microelectromechanical device from a substrate carrying at least one layer of a non-erodible material laid out to form at least a portion of the microelectromechanical device, at least one layer of an erodible material, and at least one sacrificial layer. The process includes the step of using the layer of non-erodible material as a mask and anistropically etching any of the layer of erodible material not occluded by the layer of non-erodible material. The process also includes the step of isotropically etching the sacrificial layer under at least a beam portion of the microelectromechanical device to free the beam portion of the microelectromechanical device from the substrate.
Abstract:
A method of manufacturing elements of floating rigid microstructures and a device equipped with such elements.This method of manufacturing at least one element of a microstructure (104, 116) in a substrate including a stacking of a support layer (100), a layer (102) of sacrificial material and a structure layer (104) comprises the following steps:a) etching in the substrate a relief structure (108) with lateral sides (110a, 110b)b) formation of a so-called rigidity lining (116) on the lateral sides (110a, 110b),c) removal of the sacrificial material from the relief structure (108) in order to release the floating microstructure.