Abstract:
A single-shot real-time spectropolarimeter for use in astronomy and other sciences that captures and encodes some or all of the Stokes polarization parameters simultaneously using only static, robust optical components with no moving parts is described. The polarization information is encoded onto the spectrograph at each wavelength along the spatial dimension of the 2D output data array. The varying embodiments of the concept include both a two-Stokes implementation (in which any two of the three Stokes polarization parameters are measured) and a full Stokes implementation (in which all three of the Stokes polarization parameters are measured), each of which is provided in either single beam or dual beam forms.
Abstract:
Methods and systems for a light source assembly supporting direct coupling to a photonically enabled complementary metal-oxide semiconductor (CMOS) chip are disclosed. The assembly may include a laser, a microlens, a turning mirror, reciprocal and/or non-reciprocal polarization rotators, and an optical bench. The laser may generate an optical signal that may be focused utilizing the microlens. The optical signal may be reflected at an angle defined by the turning mirror, and may be transmitted out of the light source assembly to one or more grating couplers in the chip. The laser may include a feedback insensitive laser. The light source assembly may include two electro-thermal interfaces between the optical bench, the laser, and a lid affixed to the optical bench. The turning mirror may be integrated in a lid affixed to the optical bench or may be integrated in the optical bench.
Abstract:
The present invention provides improved methods for assessing Förster resonance energy transfer using polarized light. Specifically, the methods rely on measuring depolarized light emitted by fluorescent acceptor molecules.
Abstract:
A tunable optical spectrometer includes a medium configured to perform polarization rotation within a frequency band on a linearly polarized test beam, wherein the medium is circularly birefringent, and wherein the polarization rotation is achieved based on two-photon-absorption. The medium includes a gaseous substance, a first reference laser beam having a first reference frequency, and a second reference laser beam having a second reference frequency, wherein the first reference laser beam and the second reference laser beam have a same circular polarization state.
Abstract:
A spectrometer for analysing material comprises a light source, a monochromator for selecting a range of wave-lengths from the light source and emitting them as monochromatic light, a chamber for locating a sample, a focusing means for focusing the monochromatic light onto a sample in the chamber, a detector for measuring the monochromatic light after it has interacted with the sample. An independently variable parameter is varied between two values vi and v2, while the detector measures the monochromatic light across a range of is wavelengths, the independent variable having a value or values between v1 and v1+Δv, and Δv being much smaller than the interval between v1 and v2.
Abstract:
The present invention relates to an optical device for assessing optical depth (D) in a sample (100) illuminated by polarized radiation (20) from a source (10). A first and a second radiation guide have their end portions (3Oa′, 30b′) arranged for capturing reflected radiation (25a, 25b) from the sample. A detector (40) measures a first polarization (P1) and a second polarization (P—2) of the reflected radiation (25), and a first and a second intensity (II, 12) of the reflected radiation (25a, 25b) in the first (30a) and the second (30b) radiation guide, respectively. Processing means (60) then calculates a first (f) and a second (g) spectral function, both spectral functions (f, g) being indicative of single scattering events in the sample. The processing means (60) is further arranged to calculate a measure of the correlation (C) between the first (f) and a second (g) spectral function so as to assess whether the single scattering events originate from substantially the same optical depth (D) within the sample. Thus, the causal relation between the first and second spectral functions can be used for assessing whether the single scattering events giving rise to the two spectral functions come from substantially the same optical depth (D) within the sample. The invention is particular advantageous for optically probing an epithelial layer of a patient.
Abstract:
This invention provides an apparatus and method for characterization of thin film structures. More particularly, the present invention provides methods and devices for fast and accurate identification of optical constants, thickness, interface roughness and stresses of a sensing film structures by spectropolarimetric imaging technique. This invention also provides the method for active in-line manufacturing diagnostics and process control. The invention is broadly applicable with most important applications being manufacturing diagnostics, process control, quality control and characterization of solar cells, flat panel displays and semiconductor structures.
Abstract:
A light source unit and a spectrum analyzer are provided in which the influence of interference can be reduced under conditions where light is separated into spectral components. A spectrum analyzer 1 is equipped with a light source unit 2 for irradiating light onto sample A, a detector unit 3 for detecting the light reflected, scattered, or transmitted from the sample A, and a sample stage 4 on which a sample A is placed. A wide band light source 20 generates wide band light P1 such as supercontinuum light (SC light). Also, the light source unit 2 has an interference suppressing means for suppressing the interference of each wavelength component of the wide band light P1.
Abstract:
An optical measurement system for evaluating a sample has a motor-driven rotating mechanism coupled to an azimuthally rotatable measurement head, allowing the optics to rotate with respect to the sample. A polarimetric scatterometer, having optics directing a polarized illumination beam at non-normal incidence onto a periodic structure on a sample, can measure optical properties of the periodic structure. An E-O modulator in the illumination path can modulate the polarization. The head optics collect light reflected from the periodic structure and feed that light to a spectrometer for measurement. A beamsplitter in the collection path can ensure both S and P polarization from the sample are separately measured. The measurement head can be mounted for rotation of the plane of incidence to different azimuthal directions relative to the periodic structures. The instrument can be integrated within a wafer process tool in which wafers may be provided at arbitrary orientation.
Abstract:
The present invention relates to a multi-energy system that generates and/or forms images of targets/structures by applying Mueller matrix imaging principles and/or Stokes polarimetric parameter imaging principles to data obtained by the multi-energy system. In one embodiment, the present invention utilizes at least one energy or light source to generate two or more Mueller matrix and/or Stokes polarization parameters images of a target/structure, and evaluates the Mueller matrix/Stokes polarization parameters multi-spectral difference(s) between the two or more images of the target/structure. As a result, high contrast, high specificity images can be obtained. Additional information can be obtained by and/or from the present invention through the application of image, Mueller matrix decomposition, and/or image reconstruction techniques that operate directly on the Mueller matrix and/or Stokes polarization parameters.