Abstract:
The invention relates to a spectral filter (100) comprising at least one metal layer (101) structured by a grating of traversing slots (102a to 102e, 103a to 103h). The grating consists of at least two subgratings of traversing slots (102a to 102e, 103a to 103h) intercepting one another perpendicularly.
Abstract:
In a spectroscopy module 1, a light passing hole 50 through which a light L1 advancing to a spectroscopic portion 4 passes is formed in a light detecting element 5. Therefore, it is possible to prevent the relative positional relationship between the light passing hole 50 and a light detecting portion 5a of the light detecting element 5 from deviating. Moreover, the light detecting element 5 is bonded to a front plane 2a of a substrate 2 with an optical resin adhesive 63. Thus, it is possible to reduce a stress generated onto the light detecting element 5 due to a thermal expansion difference between the light detecting element 5 and the substrate 2. Additionally, on the light detecting element 5, a first convex portion 101 is formed so as to be located at least between the light detecting portion 5a and the light passing hole 50 when viewed from a direction substantially perpendicular to the front plane 2a. Thus, when the light detecting element 5 is attached to the substrate 2 via the optical resin adhesive 63, the optical resin adhesive 63 is dammed at the first convex portion 101. Thus, the optical resin adhesive 63 is prevented from penetrating into the light passing hole 50.
Abstract:
Various embodiments include spectrometers comprising diffraction gratings monolithically integrated with other optical elements. These optical elements may include slits and mirrors. The mirrors and gratings may be curved. In one embodiment, the mirrors are concave and the grating is convex. The mirrors and grating may be concentric or nearly concentric.
Abstract:
The invention relates to a spectrograph (11) comprising a waveguide (10) provided with accesses (10; 10b, 12), a means for injecting two guided contra-propagative waves by each accesses in such a way that a spatial interference is formed in the waveguide, means (19, 20, 14, 16) for detecting the energy of the evanescent wave of the guided field produced by the interference of said contra-propagative waves.
Abstract:
Photons emanating from a channel in a fluidic structure or from moving objects are sensed using a photosensor array in an integrated circuit. The array includes subrange cells that photosense within respective subranges of a photon energy range. For example, the subrange cells can receive photons in their respective subranges from a transmission structure that has laterally varying properties. The photons can be emitted in response to excitation or can be scattered in response to illumination.
Abstract:
The present invention provides an economically feasible robust spatial heterodyne spectroscopy (SHS) interferometer. A first type prior art monolithic SHS interferometer is exceedingly expensive, whereas a second type of prior art SHS interferometer is extremely large and has many components, which need to be tuned. The present invention is much less expensive than the first type of prior art SHS interferometer and is much smaller that the second type of prior art SHS interferometer.
Abstract:
A wavelength division image measuring device that can divide a wideband incident light from a measurement object into a plurality of wavelengths with high selectivity to thereby measure these images simultaneously and collectively. Micro periodic irregular lattices are formed on a substrate 302. At this time, a plurality of microscopic element areas 101 with different lattice shapes and lattice periods are repeatedly arranged within a plane of the substrate 302. Next, a high refractive index material and a low refractive index material are alternately laid thereon so as to form a multilayer using a bias spatter method to thereby form a wavelength filter 301 with a photonic crystal structure. Thus, an array of the photonic crystal wavelength filters 031 with a sharp selectivity and different wavelength transmission characteristics can be obtained.
Abstract:
Device and method for implementing a photo-spectrometer unit, PSU (20), for use with a spectrometry system (100) having optical means (12), and electronic means (13) including detection means (15, 25, 25j) and processing means (16, 26, 26k). The PSU is formed in a first manufacturing process step into a monolithic structure as a chip of substrate material (30) including integrally formed optical means, and has a first input surface (301) separated from a second receiving surface (302) by a substrate material thickness (t). Electronic means are formed onto the PSU structure in a second manufacturing process step. The substrate material is selected as a material transparent to electromagnetic radiations, and the PSU has at least one optical deflecting element (32) configured for guiding received radiations through the thickness of the substrate material, for establishing direct optical path coupling between both an element formed on one surface and an element formed on another surface of the substrate material.
Abstract:
A spectroanalytical system for receiving radiation to be analyzed along a first path includes a grating in the first path with periodic faceted grooves for spatially separating the radiation as a function of wavelength. The blaze angles of the faceted grooves are progressively graded. A multielement detector detects radiation spatially separated by the grating. An optical conditioner is disposed in the first path between the grating and a multielement detector.
Abstract:
An integrated spectral sensing engine featuring energy sources and detectors within a single package includes sample interfacing optics and acquisition and processing electronics. The miniaturized sensor is optimized for specific laboratory and field-based measurements by integration into a handheld format. Design and fabrication components support high volume manufacturing. Spectral selectivity is provided by either continuous variable optical filters or filter matrix devices. The sensor's response covers the range from 200 nm to 25 μm based on various solid-state detectors. The wavelength range can be extended by the use of filter-matrix devices. Measurement modes include transmittance/absorbance, turbidity (light scattering) and fluorescence (emission). On board data processing includes raw data acquisition, data massaging and the output of computed results. Sensor applications include water and environmental, food and beverage, chemical and petroleum, and medical analyses. These can be expanded into various field and consumer-based applications.