RADIO-FREQUENCY (RF) TRANSMISSION SYSTEMS, DEVICES, AND METHODS FOR IN SITU TRANSMISSION ELECTRON MICROSCOPY

    公开(公告)号:US20200286706A1

    公开(公告)日:2020-09-10

    申请号:US16809736

    申请日:2020-03-05

    Abstract: A sample carrier for in situ transmission electron microscopy (TEM) has a dielectric substrate with a conductive layer that forms a coplanar waveguide. The coplanar waveguide has a first and second leads formed by the conductive layer. The first lead is between an adjacent pair of second leads and is spaced from the second leads by a respective gap. The coplanar waveguide is configured to transmit an electrical signal to a specimen held by the sample carrier, in particular, an electrical signal having a frequency in the radio-frequency (RF) regime (3 kHz-300 GHz), for example, up to 100 GHz. The sample carrier may be mounted to a TEM sample holder, which supports the sample carrier within a vacuum chamber of the microscope and provides electrical connection between the leads of the sample carrier and an RF source external to the vacuum chamber.

    Reticulated resonator, process for making and use of same

    公开(公告)号:US10444431B2

    公开(公告)日:2019-10-15

    申请号:US14995853

    申请日:2016-01-14

    Abstract: A reticulated resonator includes: a reticulated substrate that includes: a substrate frame; and a phononic structure in mechanical communication with the substrate frame and including a plurality of unit members arranged in a two-dimensional array; and a membrane disposed on the reticulated substrate. A process for producing a membrane frequency includes: providing a reticulated resonator including: a substrate frame; a phononic structure including: a first link connected to the substrate frame; a plurality of unit members arranged in a two-dimensional array and connected to the first link and in mechanical communication with the substrate frame through the first link; and a second link connected to the unit members; a membrane frame connected to the second link and in mechanical communication with the unit members through the second link; and a membrane disposed on the membrane and in mechanical communication with the substrate frame through the membrane frame and the unit members; subjecting the membrane to an excitation frequency; receiving, by the membrane, the excitation frequency; and producing, by the membrane, a membrane mode including a membrane frequency in response to receiving the excitation frequency.

    Noncontact resonameter, process for making and use of same

    公开(公告)号:US10261032B2

    公开(公告)日:2019-04-16

    申请号:US14958539

    申请日:2015-12-03

    Abstract: A noncontact resonameter includes: a resonator to: produce an excitation signal including a field; subject a sample to the excitation signal; produce a first resonator signal in a presence of the sample and the excitation signal, the first resonator signal including: a first quality factor of the resonator; a first resonance frequency of the resonator; or a combination thereof, the first resonator signal occurring in an absence of contact between the sample and the resonator; and produce a second resonator signal in a presence of the excitation signal and an absence of the sample, the second resonator signal including: a second quality factor of the resonator; a second resonance frequency of the resonator; or a combination thereof; a circuit in electrical communication with the resonator to receive the first resonator signal and the second resonator signal; and a continuous feeder to: provide the sample proximate to the resonator; dispose the sample intermediately in the field of the excitation signal during production of the first resonator signal; remove the sample from the resonator; and manipulate a position of the sample relative to the resonator in a continuous motion and in an absence of contact between the sample and the resonator.

    MRI phantom, method for making same and acquiring an MRI image

    公开(公告)号:US10082553B2

    公开(公告)日:2018-09-25

    申请号:US14802419

    申请日:2015-07-17

    Inventor: Michael A. Boss

    CPC classification number: G01R33/58 G01R33/50 Y10T29/49828

    Abstract: A magnetic resonance imaging (MRI) phantom includes an outer container that includes a first portion comprising a first wall; a second portion opposingly disposed to the first portion and sealingly engaged to the first portion, the second portion including a second wall; and an internal volume bounded by the first wall and the second wall, the internal volume being hollow and configured to receive a fluid; and a sample holder disposed in the internal volume of the outer container, wherein the MRI phantom is configured to maintain a constant temperature of the internal volume. A process for acquiring an MRI image includes providing an MRI; disposing a sample member in the sample holder; disposing a fluid in the MRI phantom; disposing the MRI phantom in an MRI device; achieving thermal equilibrium in the MRI phantom at a selected temperature; and subjecting the MRI phantom to MRI imaging at the selected temperature to acquire the MRI image of the sample.

    Noncontact metrology probe, process for making and using same

    公开(公告)号:US10078898B2

    公开(公告)日:2018-09-18

    申请号:US14930685

    申请日:2015-11-03

    Inventor: Joshua Gordon

    Abstract: Disclosed is a noncontact metrology probe including: a first camera including a first field of view; a second camera including a second field of view and arranged such that the second field of view overlaps the first field of view to form a prime focal volume; a third camera including a third field of view and arranged such that the third field of view overlaps the prime focal volume to form a probe focal volume; and a tracker including a tracker field of view to determine a location of the probe focal volume in the tracker field of view. Further disclosed is a process for calibrating a noncontact metrology probe, the process including: providing a noncontact metrology probe including: a first camera including a first field of view; a second camera including a second field of view; a third camera including a third field of view; and a tracker including a tracker field of view; overlapping the first field of view with the second field of view to form a prime focal volume; overlapping the prime focal volume with the third field of view to form a probe focal volume; and overlapping the a tracker field of view with the probe focal volume to calibrate the noncontact metrology probe.

    Signal generator, process for making and using same

    公开(公告)号:US10050722B2

    公开(公告)日:2018-08-14

    申请号:US14872078

    申请日:2015-09-30

    Abstract: A signal generator includes an optical pulse source to provide a plurality of optical pulses; a photosensitive element configured to receive optical pulses and to produce an electrical signal from optical pulses 6, electrical signal 10 including a spectrum that includes a plurality of discrete frequencies that occur at a repetition rate corresponding to that of the optical pulses or a harmonic thereof; a frequency selector to receive the electrical signal from the photosensitive element, to select dynamically the harmonic from the electrical signal and to communicate the dynamically selected harmonic; a direct digital synthesizer (DDS) to receive the harmonic of the electrical signal from the frequency selector and to produce a first output; and a frequency converter to receive the harmonic from the frequency selector and the first output from the DDS, wherein the frequency converter shifts a frequency of the harmonic by an amount substantially equal to a frequency of the first output from the DDS to produce a second output.

    Article and process for selective deposition

    公开(公告)号:US09809882B2

    公开(公告)日:2017-11-07

    申请号:US14596355

    申请日:2015-01-14

    Inventor: Owen Hildreth

    Abstract: A process for depositing a metal includes disposing an activating catalyst on a substrate; contacting the activating catalyst with a metal cation from a vapor deposition composition; contacting the substrate with a reducing anion from the vapor deposition composition; performing an oxidation-reduction reaction between the metal cation and the reducing anion in a presence of the activating catalyst; and forming a metal from the metal cation to deposit the metal on the substrate. A system for depositing a metal includes an activating catalyst to deposit on a substrate; and a primary reagent to form: a metal cation to deposit on the substrate as a metal; and a reducing anion to provide electrons to the activating catalyst, the metal cation, the substrate, or a combination thereof, wherein the primary reagent forms the metal cation and the reducing anion in response to being subjected to a dissociating condition.

Patent Agency Ranking