Abstract:
A mechanism for handling substrates such as semiconductor wafers is disclosed. The mechanism supports the substrate in a tilted orientation to ensure that undesirable contact between a bowed substrate and the mechanism does not occur. The structure that supports the substrate in a tilted orientation may be fixed or adjustable. A sensor may be provided to measure and/or monitor a distance between a substrate and the mechanism. Alternatively, a sensor for determining contact between the substrate and the mechanism may be provided.
Abstract:
An inspection system is disclosed. An optical assembly establishes an optical path between a light source and a detector. The optical assembly has a relatively large amount of longitudinal chromatic aberration, so that light at a first wavelength focuses on one region of a substrate in the optical path, while light at a second wavelength simultaneously focuses on another region of the substrate. The system can operate in a calibration mode to determine one or more wavelengths of light corresponding to regions of interest in the substrate and in an imaging mode to image regions of interest in the substrate.
Abstract:
A system (10) for directly measuring the depth of a high aspect ratio etched feature on a wafer (80) that includes an etched surface (82) and a non-etched surface (84). The system (10) utilizes an infrared reflectometer (12) that in a preferred embodiment includes a swept laser (14), a fiber circulator (16), a photodetector (22) and a combination collimator (18) and an objective lens (20). From the objective lens (20) a focused incident light (23) is produced that is applied to the non-etched surface (84) of the wafer (80). From the wafer (80) is produced a reflected light (25) that is processed through the reflectometer (12) and applied to an ADC (24) where a corresponding digital data signal (29) is produced. The digital data signal (29) is applied to a computer (30) that, in combination with software (32), measures the depth of the etched feature that is then viewed on a display (34).
Abstract:
Disclosed are methods and apparatus for reducing thermal loading of a film disposed on a surface of a sample, such as a semiconductor wafer, while obtaining a measurement of a thickness of the film in an area about a measurement site. The method includes steps of (a) bringing an optical assembly of the measurement system into focus; (b) aligning a beam spot with the measurement site; (c) turning on one of a dither EOM or a dither AOM or a piezo-electric dither assembly to sweep the beam spot in an area about the measurement site, thereby reducing the thermal loading within the measurement site; (d) making a measurement by obtaining a signal representing an average for the film under the area; (e) recording the measurement data; and (f) analyzing the measurement data to determine an average film thickness in the measurement area.
Abstract:
A method for monitoring and controlling a substrate singulation process is described. Device edges are imaged and identified for analysis. Discrepancies in device edges are noted and used to modify a singulation process and to monitor the operation of singulation processes for anomalous behavior.
Abstract:
A chuck assembly includes an upper surface configured to support a wafer-level package assembly and a clamping mechanism securing the wafer-level package assembly to the upper surface.
Abstract:
The present disclosure provides a system and method of optical inspection of substrates that have relative large variations in topography. The present disclosure provides a system wherein optical components of the optical inspection system can be automatically moved vertically towards or away from the substrate during optical inspection of the substrate. The system moves the optics in a controlled and precise manner, thereby enabling accurate on-the-fly inspection of substrates having a large variation in topography.
Abstract:
A method of assessing functionality of a probe card includes providing a probe card analyzer without a probe card interface, removably coupling a probe card having probes to a support plate of the probe card analyzer, aligning a sensor head of the probe card analyzer with the probe card, and measuring a component of the probes with the sensor head.
Abstract:
Methods and systems for manufacturing and analyzing interconnect structures in integrated circuit (IC) devices. The methods include forming an interconnect structure, such as a pillar, in an IC device. The pillar is analyzed using an opto-acoustic sensor to quantify physical characteristics used to determine whether the pillar satisfies predetermined quality criterion. The analysis includes capturing an opto-acoustic signal from the pillar and estimating optical parameters for a number of local maxima of the signal. A mode may then be fitted for each of the identified local maxima based on the optical characteristics. The modes and estimated optical parameters may then be iteratively corrected in an order from strongest to weakest local maximum. The corrected values may then be compared to a predicted physical model to identify the physical characteristics of the pillar. If the physical characteristics fall outside of the quality criterion, manufacturing processes may be altered.
Abstract:
A system for scanning a substrate and specifically a volume of that substrate to identify anomalous structures or defects is herein described. Radiation is focused at locations within the volume of the substrate and measurements of scattered light are made. Scanning of the volume of a substrate may be fairly uniform or over selected regions, favoring those regions of the substrate that are to be involved with subsequent substrate processing steps.