Abstract:
A supply unit for driving an electrode of a charged particle beam column, the supply unit includes a first amplifier and a second amplifier that are configured to receive an input signal, an output of the first amplifier is coupled, via the first resistor, to a signal line of the coaxial cable, an output of the second amplifier is coupled, via the second resistor, to a main shield of the coaxial cable, one port of the first amplifier and one port of the second amplifier are coupled to a power supply return port. The signal line is configured to provide a first driving signal to an that is coupled between the signal line and the power supply return port.
Abstract:
A method and a detection circuit. The detection circuit may include (a) a photodiode that is configured to convert radiation to a photodiode current; (b) a photodiode bias circuit that is configured to bias the photodiode; (c) a dynamic resistance circuit that has a first terminal and a second terminal; (d) a transimpedance amplifier that is configured to amplify an output current of the dynamic resistance circuit to provide an output voltage, wherein the second terminal is coupled to a negative input port of the amplification circuit; and (e) a conductor that is coupled between the first terminal and an anode of the photodiode.
Abstract:
A device that may include a DC power supply coupled to a fixed current source; an APD; a DC voltage regulator that comprises a regulating transistor, arranged to maintain a regulated voltage at a fixed value over different APD currents; a temperature control module that is arranged to maintain a portion of the temperature control module at a fixed temperature; and compensation circuit that comprises a compensation component that is thermally coupled to the APD. A voltage drop over the compensation component is smaller than a voltage drop over the APD. A sum of (a) a current that pass through the APD and (b) a current that passes through the compensation component is fixed. The portion of the temperature control module is thermally coupled to the compensation component and to the APD.
Abstract:
A method for scanning an object with a charged particle beam, the method may include repeating, for each pair of scan lines out of multiple pairs of scan lines, the stages of: (i) deflecting the charged particle beam along a first direction, thereby scanning the object along a first scan line of the pair of scan lines; (ii) collecting electrons emitted from the object during the scanning of the object along a majority of the first scan line; (iii) deflecting the charged particle beam along a second direction that is normal to the first direction; (iv) deflecting the charged particle beam along a third direction that is opposite to the first direction, thereby scanning the object along a second scan line of the pair of scan lines; (v) collecting electrons emitted from the object during the scanning of the object along a majority of the second scan line; and (vi) deflecting the charged particle beam along the second direction that is normal to the third direction.
Abstract:
A device that may include A DC power supply coupled to a fixed current source; an avalanche photo-diode (APD); a DC voltage regulator that comprises a regulating transistor; wherein the DC voltage regulator is arranged to (a) maintain a regulated voltage at a fixed value, and (b) output the regulated voltage; and a temperature control module that is arranged to maintain a portion of the temperature control module at a fixed temperature; wherein the DC voltage regulator and the APD are electrically coupled in parallel to each other, so that a sum of currents that pass through the APD and the regulating transistor equals a fixed current supplied by the fixed current source; and wherein the portion of the temperature control module is thermally coupled to the DC voltage regulator and to the APD, and wherein APD and the regulating transistor are thermally coupled to each other.
Abstract:
A sensing element that may include (a) a PIN diode that may include an anode that is coupled to an anode contact; a cathode that is coupled to a cathode contact; a semiconductor portion that has a sensing region; and an insulator that is positioned between the cathode contact and the anode contact; and (b) a shielding element. The insulator, the cathode contact and the anode contact are positioned between the shielding element and the semiconductor portion. The shielding element is shaped and positioned to facilitate radiation to impinge onto the sensing region of the semiconductor portion while at least partially shielding the insulator from electrons that are emitted from the sensing region.