Abstract:
Embodiments of the present disclosure generally relate to silicon carbide coated base substrates, silicon carbide substrates thereof, and methods for forming silicon carbide coated base substrates. In some embodiments, a method includes introducing a first silicon-containing precursor to a process chamber at a first temperature of about 800° C. to less than 1,000° C. to form a first silicon carbide layer on a base substrate. The method includes introducing a second silicon-containing precursor, that is the same or different than the first silicon-containing precursor, to the process chamber at a second temperature of about 1,000° C. to about 1,400° C. to form a second silicon carbide layer on the first silicon carbide layer.
Abstract:
A method of temperature control for a chemical mechanical polishing system includes directing a gas that includes steam from an orifice onto the component in the polishing system while the component is spaced away from a polishing pad of the polishing system to raise a temperature of the component to an elevated temperature, and before the component returns to an ambient temperature, moving the component into contact with the polishing pad.
Abstract:
A method of cleaning for a chemical mechanical polishing system includes directing a gas that includes steam from an orifice onto a component in the polishing system while the component is spaced away from a polishing pad of the polishing system to clean the component, and moving the component into contact with the polishing pad.
Abstract:
A chemical mechanical polishing apparatus includes a rotatable platen to hold a polishing pad, a carrier to hold a substrate against a polishing surface of the polishing pad during a polishing process, and a temperature control system including a source of heated or coolant fluid and a plenum having a plurality of openings positioned over the platen and separated from the polishing pad for delivering the fluid onto the polishing pad, wherein at least some of the openings are each configured to deliver a different amount of the fluid onto the polishing pad.
Abstract:
A chemical mechanical polishing system includes a platen to support a polishing pad having a polishing surface, and a pad cooling assembly. The pad cooling assembly has an arm extending over the platen, a nozzle suspended by the arm and coupled to a source of coolant fluid, the nozzle positioned to spray coolant fluid from the source onto the polishing surface of the polishing pad, and an opening in the arm adjacent the nozzle and a passage extending in the arm from the opening, the opening positioned sufficiently close to the nozzle that a flow of coolant fluid from the nozzle entrains air from the opening.
Abstract:
A chemical mechanical polishing system includes a substrate support configured to hold a substrate during a polishing operation, a polishing pad assembly include a membrane and a polishing pad portion, a polishing pad carrier, and a drive system configured to cause relative motion between the substrate support and the polishing pad carrier. The polishing pad carrier includes a casing having a cavity and an aperture connecting the cavity to an exterior of the casing. The polishing pad assembly is positioned in the casing such that the membrane divides the cavity into a first chamber and a second chamber and the aperture extends from the second chamber. The polishing pad carrier and polishing pad assembly are positioned and configured such that at least during application of a sufficient pressure to the first chamber the polishing pad portion projects through the aperture.
Abstract:
A chemical mechanical polishing system includes a substrate support configured to hold a substrate during a polishing operation, a polishing pad assembly include a membrane and a polishing pad portion, a polishing pad carrier, and a drive system configured to cause relative motion between the substrate support and the polishing pad carrier. The polishing pad carrier includes a casing having a cavity and an aperture connecting the cavity to an exterior of the casing. The polishing pad assembly is positioned in the casing such that the membrane divides the cavity into a first chamber and a second chamber and the aperture extends from the second chamber. The polishing pad carrier and polishing pad assembly are positioned and configured such that at least during application of a sufficient pressure to the first chamber the polishing pad portion projects through the aperture.
Abstract:
In one aspect, a substrate cleaning system is provided. The substrate cleaning system includes a plurality of cleaning modules; a conveyor for transporting a substrate between the cleaning modules; and a partition assembly that isolates the cleaning modules from the conveyor. Apparatus and methods for isolating CMP cleaning modules from a conveyor are provided, as are numerous other aspects.
Abstract:
A chemical mechanical polishing system includes a first polishing station including a first platen to support a first polishing pad, a transfer station to receive a substrate from a robot, a carrier head movable on a predetermined path from the polishing station to the transfer station, a gas flow regulator having an input for a carrier gas, a liquid flow regulator having an input for a cleaning liquid, and a fluid jet cleaner at a position along the predetermined path. The fluid jet cleaner includes an atomizer nozzle including an input port coupled to the gas flow regulator, an injection port coupled to the liquid flow regulator, and an output port positioned to spray the cleaning liquid entrained in the carrier gas onto the substrate held by the carrier head when the carrier head is located above the fluid jet cleaner.
Abstract:
An apparatus for steam treatment of a conditioner head and/or conditioner disk in a chemical mechanical polishing system includes a conditioner cleaning cup, a boiler to generate steam, one or more nozzles positioned to direct steam inwardly into a cavity defined by the load cup, and a supply line running from the boiler to the one or more nozzles to supply steam to the one or more nozzles.