MAGNETORESISTIVE DEVICES AND METHODS FOR MANUFACTURING MAGNETORESISTIVE DEVICES

    公开(公告)号:US20170125044A1

    公开(公告)日:2017-05-04

    申请号:US15400521

    申请日:2017-01-06

    CPC classification number: G11B5/3903 G01R33/09 G11B5/3909 G11B2005/3996

    Abstract: A magnetoresistive device that can include a magnetoresistive stack and an etch-stop layer (ESL) disposed on the magnetoresistive stack. A method of manufacturing the magnetoresistive device can include: depositing the magnetoresistive stack, the ESL and a mask layer on a substrate; performing a first etching process to etch a portion of the mask layer to expose a portion of the ESL; and performing a second etching process to etch the exposed portion of the ESL. The second etching process can also etch a portion of the magnetoresistive stack. The first and second etching processes can be different. For example, the first etching process can be a reactive etching process and the second etching process can be a non-reactive etching process.

    Magnetoresistive devices and methods for manufacturing magnetoresistive devices
    24.
    发明授权
    Magnetoresistive devices and methods for manufacturing magnetoresistive devices 有权
    磁阻器件及制造磁阻器件的方法

    公开(公告)号:US09570099B2

    公开(公告)日:2017-02-14

    申请号:US14717213

    申请日:2015-05-20

    CPC classification number: G11B5/3903 G01R33/09 G11B5/3909 G11B2005/3996

    Abstract: A magnetoresistive device that can include a magnetoresistive stack and an etch-stop layer (ESL) disposed on the magnetoresistive stack. A method of manufacturing the magnetoresistive device can include: depositing the magnetoresistive stack, the ESL and a mask layer on a substrate; performing a first etching process to etch a portion of the mask layer to expose a portion of the ESL; and performing a second etching process to etch the exposed portion of the ESL and a portion of the magnetoresistive stack. The method can further include depositing a photoresist layer on the hard mask before the first etching process and removing the photoresist layer from the hard mask following the first etching process. The first and second etching processes can be different. For example, the first etching process can be a reactive etching process and the second etching process can be a non-reactive etching process.

    Abstract translation: 可以包括磁阻堆叠和设置在磁阻堆叠上的蚀刻停止层(ESL)的磁阻器件。 制造磁阻器件的方法可以包括:在衬底上沉积磁阻堆叠,ESL和掩模层; 执行第一蚀刻工艺以蚀刻掩模层的一部分以暴露ESL的一部分; 以及执行第二蚀刻工艺以蚀刻ESL的暴露部分和磁阻堆叠的一部分。 该方法还可以包括在第一蚀刻工艺之前在硬掩模上沉积光致抗蚀剂层,并且在第一蚀刻工艺之后从硬掩模中除去光致抗蚀剂层。 第一和第二蚀刻工艺可以不同。 例如,第一蚀刻工艺可以是反应性蚀刻工艺,第二蚀刻工艺可以是非反应性蚀刻工艺。

    CAVITY STRUCTURES FOR MEMS DEVICES
    26.
    发明申请
    CAVITY STRUCTURES FOR MEMS DEVICES 审中-公开
    MEMS器件的CAVITY结构

    公开(公告)号:US20150353344A1

    公开(公告)日:2015-12-10

    申请号:US14832426

    申请日:2015-08-21

    Abstract: Embodiments relate to MEMS devices and methods for manufacturing MEMS devices. In one embodiment, the manufacturing includes forming a monocrystalline sacrificial layer on a non-silicon-on-insulator (non-SOI) substrate, patterning the monocrystalline sacrificial layer such that the monocrystalline sacrificial layer remains in a first portion and is removed in a second portion lateral to the first portion; depositing a first silicon layer, the first silicon layer deposited on the remaining monocrystalline sacrificial layer and further lateral to the first portion; removing at least a portion of the monocrystalline sacrificial layer via at least one release aperture in the first silicon layer to form a cavity and sealing the cavity.

    Abstract translation: 实施例涉及用于制造MEMS器件的MEMS器件和方法。 在一个实施例中,制造包括在绝缘体上非绝缘体(非SOI)衬底上形成单晶牺牲层,图案化单晶牺牲层,使得单晶牺牲层保持在第一部分中并在第二部分中被去除 部分横向于第一部分; 沉积第一硅层,所述第一硅层沉积在剩余的单晶牺牲层上,并且进一步横向于所述第一部分; 通过所述第一硅层中的至少一个释放孔去除所述单晶牺牲层的至少一部分,以形成空腔并密封所述空腔。

    CAVITY STRUCTURES FOR MEMS DEVICES
    27.
    发明申请
    CAVITY STRUCTURES FOR MEMS DEVICES 审中-公开
    MEMS器件的CAVITY结构

    公开(公告)号:US20140252422A1

    公开(公告)日:2014-09-11

    申请号:US14281251

    申请日:2014-05-19

    Abstract: Embodiments relate to MEMS devices, particularly MEMS devices integrated with related electrical devices on a single wafer. Embodiments utilize a modular process flow concept as part of a MEMS-first approach, enabling use of a novel cavity sealing process. The impact and potential detrimental effects on the electrical devices by the MEMS processing are thereby reduced or eliminated. At the same time, a highly flexible solution is provided that enables implementation of a variety of measurement principles, including capacitive and piezoresistive. A variety of sensor applications can therefore be addressed with improved performance and quality while remaining cost-effective.

    Abstract translation: 实施例涉及MEMS器件,特别是与单个晶片上的相关电气器件集成的MEMS器件。 实施例利用模块化工艺流程概念作为MEMS首要方法的一部分,使得能够使用新颖的腔体密封过程。 因此,通过MEMS处理对电气装置的影响和潜在的有害影响被减少或消除。 同时,提供了一种高度灵活的解决方案,可以实现各种测量原理,包括电容式和压阻式。 因此,可以在提高性能和质量的同时解决各种传感器应用,同时保持成本效益。

    XMR ANGLE SENSORS
    29.
    发明申请
    XMR ANGLE SENSORS 审中-公开

    公开(公告)号:US20170314965A1

    公开(公告)日:2017-11-02

    申请号:US15652646

    申请日:2017-07-18

    Abstract: Embodiments relate to xMR sensors, in particular AMR and/or TMR angle sensors with an angle range of 360 degrees. In embodiments, AMR angle sensors with a range of 360 degrees combine conventional, highly accurate AMR angle structures with structures in which an AMR layer is continuously magnetically biased by an exchange bias coupling effect. The equivalent bias field is lower than the external rotating magnetic field and is applied continuously to separate sensor structures. Thus, in contrast with conventional solutions, no temporary, auxiliary magnetic field need be generated, and embodiments are suitable for magnetic fields up to about 100 mT or more. Additional embodiments relate to combined TMR and AMR structures. In such embodiments, a TMR stack with a free layer functioning as an AMR structure is used. With a single such stack, contacted in different modes, a high-precision angle sensor with 360 degrees of uniqueness can be realized.

Patent Agency Ranking