Abstract:
This invention relates to a cobalt-based catalyst on a metal structure for selective production of synthetic oil via Fischer-Tropsch reaction, a method of preparing the same and a method of selectively producing synthetic oil using the same, wherein zeolite, cobalt and a support are mixed and ground to give a catalyst sol, which is then uniformly thinly applied on the surface of a metal structure using a spray-coating process, thereby preventing generation of heat during Fischer-Tropsch reaction and selectively producing synthetic oil having a carbon chain shorter than that of wax. This catalyst is prepared by burning a powder mixture obtained by melt infiltration of a cobalt hydrate and a metal oxide support to give a catalyst powder including cobalt oxide/metal oxide support; hybridizing the catalyst powder including cobalt oxide/metal oxide support with a zeolite powder to give a hybrid catalyst powder; mixing the hybrid catalyst powder with an organic binder and an inorganic binder and grinding the mixed hybrid catalyst powder to give a hybrid catalyst sol; spray-coating a metal structure surface-treated with alumina by atomic layer deposition with the hybrid catalyst sol; and thermally treating the metal structure spray-coated with the hybrid catalyst sol.
Abstract:
The present invention relates to an egg-shell type hybrid structure of highly dispersed nanoparticles-metal oxide support, a preparation method thereof, and a use thereof. Specifically, the present invention relates to an egg-shell type hybrid structure of highly dispersed nanoparticles-metal oxide support, providing an excellent platform in a size of nanometers or micrometers which can support nanoparticles selectively in the porous shell portion by employing a metal oxide support with an average diameter of nanometers or micrometers including a core of nonporous metal oxide and a shell of porous metal oxides, a preparation method thereof, and a use thereof.
Abstract:
This invention relates to a method of preparing an iron carbide/carbon nanocomposite catalyst containing potassium for high temperature Fischer-Tropsch (FT) synthesis reaction and the iron carbide/carbon nanocomposite catalyst prepared thereby, and a method of manufacturing a liquid hydrocarbon using the same and a liquid hydrocarbon manufactured thereby, wherein a porous carbon support is uniformly impregnated with an iron hydrate using melt infiltration, and potassium is also supported together via various addition processes, including a pre-addition process of a potassium salt which is ground upon impregnation with the iron hydrate, or a mid- or post-addition process of a potassium solution using incipient wetness impregnation after impregnation with the iron hydrate. Accordingly, the highly active iron carbide/potassium/carbon composite catalyst for high temperature FT reaction in which 5˜30 wt % of active iron carbide particles are supported on the porous carbon support can be obtained and is structurally stable to heat even in high temperature FT reaction of 300° C. or more, and liquid hydrocarbons can be selectively obtained at high yields.
Abstract:
Iron/carbon (Fe/C) nanocomposite catalysts are prepared for Fischer-Tropsch synthesis reaction. A preparation method includes steps of mixing iron hydrate salts and a mesoporous carbon support to form a mixture, infiltrating the iron hydrate salts into the carbon support through melt infiltration of the mixture near a melting point of the iron hydrate salts, forming iron-carbide particles infiltrated into the carbon support through calcination of the iron hydrate salts infiltrated into the carbon support under a first atmosphere, and vacuum-drying the iron-carbide particles after passivation using ethanol. Using such catalysts, liquid hydrocarbons are produced.
Abstract:
This invention relates to a method of preparing an iron carbide/carbon nanocomposite catalyst containing potassium for high temperature Fischer-Tropsch (FT) synthesis reaction and the iron carbide/carbon nanocomposite catalyst prepared thereby, and a method of manufacturing a liquid hydrocarbon using the same and a liquid hydrocarbon manufactured thereby, wherein a porous carbon support is uniformly impregnated with an iron hydrate using melt infiltration, and potassium is also supported together via various addition processes, including a pre-addition process of a potassium salt which is ground upon impregnation with the iron hydrate, or a mid- or post-addition process of a potassium solution using incipient wetness impregnation after impregnation with the iron hydrate. Accordingly, the highly active iron carbide/potassium/carbon composite catalyst for high temperature FT reaction in which 5˜30 wt % of active iron carbide particles are supported on the porous carbon support can be obtained and is structurally stable to heat even in high temperature FT reaction of 300° C. or more, and liquid hydrocarbons can be selectively obtained at high yields.