Abstract:
A blade tensioner of a blade tensioner system for a chain that drivingly connects a drive shaft to a driving shaft in an engine, that improves the chain-damping efficiency in a blade tensioner applied to the chain within an engine, prevents the sideways tilt of the blade tensioner during operation, in a blade tensioner applied to the chain in an engine, and provides a blade tensioner with a functionality that allows it to transversely guide a chain along the chain sliding face in a blade shoe, while maintaining the flexural deformability (i.e., the flexibility) of the blade shoe.
Abstract:
A curable flux which works as a flux during soldering and as a reinforcing material for the soldered portion after being cured by heating; a resist for soldering which coats a circuit pattern having a land for placing solder balls and is cured by heating after the soldering; a semiconductor package and a semiconductor device in which the curable flux is used for soldering and the soldered portion is reinforced with the flux by heating; processes for producing a semiconductor package and a semiconductor device comprising using the curable flux for soldering and curing the curable flux after the soldering to reinforce the soldered portion. The curable flux works as a flux during bonding solder balls to the semiconductor package and soldering the package to a printed circuit board and reinforces the soldered portion after being cured by heating after the soldering.
Abstract:
The interior of a chain case 23 accommodating therein a chain-sprocket mechanism (a sprocket 12 and a silent chain 14)provided for rotating a crankshaft 11 and camshafts 5 in an interlocking fashion and a tensioner shoe 18 for applying a predetermined tension to a slack side of a chain or a guide shoe 19 for preventing the run-out of the chain on a stretched side thereof is partitioned by providing a rib 27, 28 so as to protrude from at least either of an end face of an engine E and an inner surface of a chain cover 22 joined to the end face with distal end edges of the ribs being directed toward sides 18a, 18b of the tensioner shoe or the guide shoe that are perpendicular to the crankshaft. According to this construction, since the rib provided so as to protrude from the cylinder block or the chain cover cooperates with the tensioner shoe or the guide shoe so as to form a separator, an oil passage having a sufficient cross-sectional area can be defined without control from the chain line and necessity of enlargement of the engine.
Abstract:
A tensioner for an endless transmitting member is provided to reliably prevent the loosening of an endless chain, while preventing the occurrence of an incorrect meshing of the endless chain with sprockets. A plunger holder is biased in an advancing direction by the action of a first spring supported in a housing, and a plunger, carried in the plunger holder, is biased in an advancing direction by the action of a second spring having a spring constant larger than that of the first spring. Only the movement of the plunger holder in the advancing direction is permitted by a ratchet mechanism mounted between the plunger holder and the housing. During operation of the engine, the advancing movement of the plunger holder is inhibited by the hydraulic pressure transmitted to a hydraulic pressure chamber, and the plunger is advanced and retracted in accordance with a variation in tension of the endless chain. When the engine is stopped, the ratchet mechanism is operated in accordance with the elongation of the endless chain due to wearing to advance the plunger holder one pitch at a time along with the plunger.
Abstract:
A method of manufacturing a semiconductor device is provided which is capable of improving productivity and reliability. The method of manufacturing a semiconductor device (1) of the invention includes a sequential stacking process, an individual stacked body-obtaining process, and a base material bonding process. In the sequential stacking process, a block stacked body is obtained. The block stacked body is a block stacked body (2B) in which semiconductor blocks (10B, 12B, 14B, and 16B) are stacked in a state of not being solder-bonded. In the semiconductor blocks (10B, 12B, 14B, and 16B), a plurality of semiconductor components are arranged. In the individual stacked body obtaining process, an individual stacked body (2) is obtained in which terminals of the stacked semiconductor components are solder-bonded and which is cut from the block stacked body (2B) in a stacked semiconductor component unit.
Abstract:
A vehicle brake control system includes a regenerative braking control component, a frictional braking control component, a calculating component and a controlling component. The regenerative braking control component controls a regenerative braking device to provide a regenerative braking torque. The frictional braking control component controls a frictional braking device to provide a frictional braking torque. The calculating component calculates a regenerative braking torque filter processing value based on a fluctuation frequency of the regenerative braking torque. The controlling component, during a first condition, operates a motorized power assist control device based on the regenerative braking torque filter processing value, instead of the regenerative braking torque, to moderate the frictional braking torque, such that the regenerative braking torque and the moderated frictional braking torque provide a target braking torque based on a braking operation.
Abstract:
A multilayered circuit board of the present invention has a single-side laminated structure and does not include a core substrate having via-holes formed therethrough and vias for providing electrical connection through the via-holes. The multilayered circuit board includes a plurality of pairs of layers, each pair including a conductor circuit layer and an insulator layer, wherein a glass transition temperature of each insulator layer is 170° C. or higher, a coefficient of thermal expansion at the glass transition temperature or lower of each insulator layer is 35 ppm or less, and a modulus of elasticity of each insulator layer is 5 GPa or more.
Abstract:
A method for manufacturing a multilayer printed wiring board which enables the dielectric layers to have excellent thickness uniformity, the capacitor circuits to have high registration accuracy and the unnecessary dielectric layer is removed as large as possible; and a multilayer printed wiring board with an embedded capacitor circuit manufactured by the method.
Abstract:
A multilayered circuit board of the present invention has a single-side laminated structure and does not include a core substrate having via-holes formed therethrough and vias for providing electrical connection through the via-holes. The multilayered circuit board includes a plurality of pairs of layers, each pair including a conductor circuit layer and an insulator layer, wherein a glass transition temperature of each insulator layer is 170° C. or higher, a coefficient of thermal expansion at the glass transition temperature or lower of each insulator layer is 35 ppm or less, and a modulus of elasticity of each insulator layer is 5 GPa or more.
Abstract:
The present invention provides a solder resist material, which can suppress the warpage of a semiconductor package upon exposure to heat or impact even when used in a thin wiring board and meets a demand for size reduction in electronic devices and a higher level of integration, and a wiring board comprising the solder resist material and a semiconductor package. The solder resist material of the present invention can effectively suppress the warpage of a semiconductor package through a fiber base material-containing layer interposed between resin layers. The fiber base material-containing layer is preferably unevenly distributed in the thickness direction of the solder resist material.