Abstract:
Methods for determining the 3-D structures of proteins. Such a method includes incorporating a compound into a protein crystal such that the compound enhances the activity of the protein crystal to second harmonic generation, illuminating the protein crystal with a sufficiently intense light to cause second harmonic generation by the protein crystal, and detecting a second harmonic generation response produced by the protein crystal that is suitable for protein structure determination by diffraction analysis.
Abstract:
A method and apparatus for photon, ion or particle counting described that provides seven orders of magnitude of linear dynamic range (LDR) for a single detector. By explicitly considering the log-normal probability distribution in voltage transients as a function of the number of photons, ions or particles present, the binomial distribution of observed counts for a given threshold, the mean number of photons, ions or particles can be determined well beyond the conventional limit.
Abstract:
A beam-scanning optical design is described for achieving up to kHz frame-rate optical imaging on multiple simultaneous data acquisition channels. In one embodiment, two fast-scan resonant mirrors direct the optical beam on a circuitous trajectory through the field of view, with the trajectory repeat-time given by the least common multiplier of the mirror periods. Dicing the raw time-domain data into sub-trajectories combined with model-based image reconstruction (MBIR) 3D in-painting algorithms allows for effective frame-rates much higher than the repeat time of the Lissajous trajectory. Because sub-trajectory and full-trajectory imaging are different methods of analyzing the same data, both high-frame rate images with relatively low resolution and low frame rate images with high resolution are simultaneously acquired.
Abstract:
A quantitative optical microscopy arrangement is described. Specifically, a digital filter derived from linear discriminant analysis is described for recovering impulse responses in applications that may include photon counting from a high speed photodetector and applied to remove ringing distortions from impedance mismatch in multiphoton fluorescence microscopy. Training of the digital filter is achieved by defining temporally coincident and non-coincident transients and identifying the projection within filter-space that best separates the two classes. The training allows rapid data analysis by digital filtering. The LDA filter is also capable of recovering deconvolved impulses for single photon counting from highly distorted ringing waveforms from an impedance mismatched photomultiplier tube. The LDA filter is also successful in removing these ringing distortions from two-photon excited fluorescence micrographs and may extend the dynamic range of photon counting by about three orders of magnitude through minimization of detector paralysis.
Abstract:
A method for phase contrasting-correlation spectroscopy: converting an incident linearly polarized light into two polarized components (polarized divergent and convergent components, wherein the polarized divergent component is orthogonal to the polarized convergent component), focusing each of the polarized divergent component and the polarized convergent component into a focal plane, thereby producing two focus planes constituting a reference focus (RF) plane and a sample focus (SF) plane; placing a sample at the SF plane and ambient conditions of the sample at the RF plane, resulting in a phase shift between the two polarized components; reconstituting the two phase-shifted polarized components into a phase-shifted linearly polarized light; detecting the phase-shifted linearly polarized light; calculating phase and intensity of the sample from the phase-shifted linearly polarized light; establishing an autocorrelation of phase and intensity of the phase-shifted linearly polarized light; and generating correlograms of intensity and phase of the phase-shifted linearly polarized light.
Abstract:
A method of obtaining a measurement signal representative of the particle size distributions in nanocrystal suspensions that includes a step of providing a first light beam along a first axis to a first micro-retarder array to generate polarization wavefront shaped light. The shaped light is applied to an objective configured to focus two orthogonally polarized components of the polarization wavefront shaped light to produce first and second axially offset foci along the first axis. A sample having particles in suspension is disposed in one foci to produce a measurement optical signal having phase and intensity values corresponding to at least some of the particles in suspension. The method also includes determining intensity and quantitative phase information as a function of time based on the optical signals.
Abstract:
A system including a first micro-retarder array, wherein the first micro-retarder array is configured to convert a purely polarized light of an incident light into two components. The system additionally includes an optical device, wherein the optical device is configured to collimate the two components to two foci planes. Moreover, the system includes a second micro-retarder array, wherein the second micro-retarder array is configured to combine a set of two components of the incident light, thereby producing a second purely polarized light. Further the system includes a detector, wherein the detector is configured to receive the second purely polarized light.
Abstract:
A method for imaging a sample, wherein the sample changes a polarization state of light as a function of position, wherein the method includes changing a polarization state of a purely polarized light of an incident light striking a micro-retarder array, thereby inducing a changed polarization state of the polarization state. The micro-retarder array is placed in a rear conjugate focal plane of a microscope. The method additionally includes projecting the changed polarization state of the polarization state into an object plane of the microscope containing the sample.
Abstract:
A system including a first micro-retarder array, wherein the first micro-retarder array is configured to convert a purely polarized light of an incident light into two components. The system additionally includes an optical device, wherein the optical device is configured to collimate the two components to two foci planes. Moreover, the system includes a second micro-retarder array, wherein the second micro-retarder array is configured to combine a set of two components of the incident light, thereby producing a second purely polarized light. Further the system includes a detector, wherein the detector is configured to receive the second purely polarized light.
Abstract:
A quantitative optical microscopy arrangement is described. Specifically, a digital filter derived from linear discriminant analysis is described for recovering impulse responses in applications that may include photon counting from a high speed photodetector and applied to remove ringing distortions from impedance mismatch in multiphoton fluorescence microscopy. Training of the digital filter is achieved by defining temporally coincident and non-coincident transients and identifying the projection within filter-space that best separates the two classes. The training allows rapid data analysis by digital filtering. The LDA filter is also capable of recovering deconvolved impulses for single photon counting from highly distorted ringing waveforms from an impedance mismatched photomultiplier tube. The LDA filter is also successful in removing these ringing distortions from two-photon excited fluorescence micrographs and may extend the dynamic range of photon counting by about three orders of magnitude through minimization of detector paralysis.