Abstract:
Embodiments described herein relate to an apparatus for a feeder system. The apparatus includes a reactant source, a reactant reservoir, a frame, and a valve. The reactant source contains a first reactant. The reactant reservoir receives the first reactant from the reactant source and applies a second reactant to the first reactant to facilitate a chemical reaction. The frame is coupled to the reactant source to maintain the reactant source gravitationally directly above the reactant reservoir. The valve is disposed between the reactant source and the reactant reservoir to control flow of the first reactant into the reactant reservoir.
Abstract:
A system for vaporizing and optionally decomposing a reagent, such as aqueous ammonia or urea, which is useful for NOx reduction, includes a cyclonic decomposition duct, wherein the duct at its inlet end is connected to an air inlet port and a reagent injection lance. The air inlet port is in a tangential orientation to the central axis of the duct. The system further includes a metering valve for controlling the reagent injection rate. A method for vaporizing and optionally decomposing a reagent includes providing a cyclonic decomposition duct which is connected to an air inlet port and an injection lance, introducing hot gas through the air inlet port in a tangential orientation to the central axis of the duct, injecting the reagent axially through the injection lance into the duct; and adjusting the reagent injection rate through a metering valve.
Abstract:
The invention relates to a compressed-air device for controlling valves comprising, in a longitudinal direction, a first vane-type rotary cylinder (1) having a front face (2) as well as a back face (4), said front face (2) being provided with a rotatable head (3), and a second vane-type rotary cylinder (10) having a front face (11) and a back face, said first (1) and second (10) cylinders each being supplied with compressed air by means of a compressed air valve connected to two ports (7, 8; 14, 15) on each of said first and second cylinders.
Abstract:
A control valve (10) includes a valve body with a plurality of ports (A, B, C, D, E, F) and a plurality of annular flow passages (53, 55, 57). A piston (34) which includes a plurality of annular flow passages and a longitudinal flow passage is selectively movable within a bore (32) within the valve body through operation of a valve controller (70). The valve controller is selectively operative to control the position of the piston so as to enable liquid flow through a plurality of flow paths. The valve controller further includes a installable and removable valve controller housing (74) which is releasibly engageable with a valve base (72). The valve may include a changeable piston and changeable injector and plug components to adapt the valve to different flow and fluid mixing requirements.
Abstract:
A unit for processing a liquid/gas phase mixture, a mercaptan oxidation apparatus, and a method of processing a liquid/gas phase mixture are provided. In an embodiment, a unit for processing a liquid/gas phase mixture includes a vessel that is adapted to receive the liquid/gas phase mixture and a distributor that is disposed in the vessel. The distributor is adapted for flow of the liquid/gas phase mixture into the vessel, and the distributor includes a first outlet pipe that is horizontally disposed within the vessel. The first outlet pipe includes top orifices and bottom orifices that are spaced along the first outlet pipe, and the first outlet pipe is in fluid communication with the vessel through the top orifices and the bottom orifices. The top orifices have a smaller cross-sectional area than the bottom orifices.
Abstract:
The invention relates to a process a system and a high pressure pump for the preparation of a copolymer of ethylene and a di- or higher functional (meth) acrylate in a tubular reactor, comprising the steps of: injecting ethylene at a pressure of 100 MPa to 350 MPa into the reactor from a high pressure compressor and injecting the (meth)acrylate at a pressure of 100 MPa to 350 MPa into the reactor from a high pressure pump, wherein the high pressure pump comprises—a pump suction chamber for receiving a medium to be compressed; —a cylinder for receiving the medium to be compressed from the pump suction chamber; —an outlet for discharging a compressed medium from the cylinder, —a seal fixed to the inner wall of the cylinder at an end of the cylinder distal to the outlet and —a plunger movable in the cylinder by sliding through the seal, wherein a leakage gap is present along the plunger and the leakage gap is fluidly connected to the pump suction chamber.
Abstract:
The invention concerns a purge/sampling system for vessels, particularly for high temperature, high pressure vessels such as hydroconversion reactors used in refinery processes and operated in severe conditions.Such purge/sampling system comprises a purge/sampling line (16) equipped with a connector designed to be connected to the vessel (10), a first (18 and a second (20) flow regulation systems mounted in series on the purge/sampling line, wherein at least one injection line (22) is connected to the purge/sampling line between the first and the second flow regulation systems, said injection line comprising connecting means to a source of cleaning fluid (24) and at least one flow regulation device to control the flow of cleaning fluid through injection line and purge/sampling lineThe invention also concerns a vessel equipped with such a purge/sampling system, as well as a cleaning method using said purge/sampling system.
Abstract:
A control valve (10) includes a valve body with a plurality of ports (A, B, C, D, E, F) and a plurality of annular flow passages (53, 55, 57). A piston (34) which includes a plurality of annular flow passages and a longitudinal flow passage is selectively movable within a bore (32) within the valve body through operation of a valve controller (70). The valve controller is selectively operative to control the position of the piston so as to enable liquid flow through a plurality of flow paths. The valve controller further includes a installable and removable valve controller housing (74) which is releasibly engageable with a valve base (72). The valve may include a changeable piston and changeable injector and plug components to adapt the valve to different flow and fluid mixing requirements.
Abstract:
A system for vaporizing and optionally decomposing a reagent, such as aqueous ammonia or urea, which is useful for NOx reduction, includes a cyclonic decomposition duct, wherein the duct at its inlet end is connected to an air inlet port and a reagent injection lance. The air inlet port is in a tangential orientation to the central axis of the duct. The system further includes a metering valve for controlling the reagent injection rate. A method for vaporizing and optionally decomposing a reagent includes providing a cyclonic decomposition duct which is connected to an air inlet port and an injection lance, introducing hot gas through the air inlet port in a tangential orientation to the central axis of the duct, injecting the reagent axially through the injection lance into the duct; and adjusting the reagent injection rate through a metering valve.
Abstract:
The invention relates to a process for production of at least one C4 oxidation product, comprising the steps: a) providing a feed composition comprising at least two feed compounds selected from tert-butyl alcohol, methyl tert-butyl ether and isobutylene; b) subjecting the feed composition to a catalytic reaction zone comprising at least one oxidation stage and obtaining a reaction phase comprising the C4 oxidation product, to a C4 oxidation product obtainable therefrom, to an apparatus for production of at least one C4 oxidation product, a process carried out in the apparatus, to a methacrylic acid, to a polymer comprising methacrylic acid and process for production thereof, to methyl methacrylate and a process for production thereof, to a methacrylate ester and a process for production thereof, to a polymer comprising at least one of methacrylic acid, methyl methacrylate and a methacrylate ester and a process for production thereof, to a composition comprising at least one of methacrylic acid, methyl methacrylate, a methacrylate ester and a polymer comprising at least one of methacrylic acid, methyl methacrylate and a methacrylate ester, to chemical products, and to the use of at least one of methacrylic acid, methyl methacrylate, a methacrylate ester, a polymer comprising at least one of methacrylic acid, methyl methacrylate and a methacrylate ester and a composition comprising at least one of these in chemical products.