Abstract:
A method of manufacturing optoelectronic components includes spraying a fluorescent layer of an optoelectronic component onto a substrate, the substance or the substance mixture of the fluorescent layer including an electric charge when sprayed on, and wherein the electrically charged substance or the at least partially electrically charged substance mixture includes a larger electric potential when the fluorescent layer is sprayed on than at least one area of the substrate; and locally adjusting the thickness of the fluorescent layer of the sprayed-on fluorescent substance when spraying on the fluorescent layer onto the substrate by an electric potential gradient.
Abstract:
The present inventions relate to the formation of a thin polymer film on a substrate. Apparatus is described for transforming a solid polymer resist into an aerosol of small particles, electrostatically charging and depositing the particles onto a substrate, and flowing the particles into a continuous layer. Apparatus is further described for transforming solid resist into an aerosol of small particles by heating the resist to form a low viscosity liquid such as is compatible with nebulization and applying the techniques of jet or impact nebulization and aerosol particle sizing to form the aerosol. A method is further described of using ionized gas to confer charge onto the aerosol particles and using a progression of charging devices establish an electric field directing the flow of charged particles to the substrate. The progression of charging devices and associated apparatus results in high collection efficiency for the aerosol particles.
Abstract:
The subject disclosure provides a method for applying dissimilar electrical charges to portions of a plurality of applicators by way of a conductor included in a conduit of each applicator. The method further includes causing each applicator to generate one or more jet sprays of a liquid received by each applicator for application of a material on a substrate, where one or more portions of the material on the substrate have one or more net charges associated with the dissimilar electrical charges applied to the portions of the plurality of applicators, where the conductor of each applicator is a sleeve positioned in the applicator, and where a diameter of the sleeve results in one of an outer surface of the sleeve contacting a surface of the conduit, or the outer surface of the sleeve having a separation from the surface of the conduit of the applicator. Additional embodiments are disclosed.
Abstract:
A method and apparatus for coating a substrate using one or more liquid starting materials. The substrate is coated by atomizing one or more liquid starting materials into droplets and vaporizing the droplets in a deposition chamber for before the starting materials react on the surface of the substrate. The droplets are guided towards the substrate with electrical forces before the droplets are vaporized.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, an apparatus having a plurality of applicators, each applicator with an ingress opening to receive a liquid, and an egress opening to release the liquid, and a conductor positioned in a conduit of each of the plurality of applicators, the conductor and the conduit having dimensions to cause a surface tension of the liquid to prevent a constant flow of the liquid from the egress opening. Each conductor of the plurality of applicators can be coupled to one of one or more power sources operable to apply a charge to the liquid to overcome the surface tension and form at the egress opening of each applicator a plurality of jet sprays of the liquid applicable on a substrate to form a thin film. Additional embodiments are disclosed.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, an apparatus having a plurality of applicators, each applicator with an ingress opening to receive a liquid, and an egress opening to release the liquid, and a conductor positioned in a conduit of each of the plurality of applicators, the conductor and the conduit having dimensions to cause a surface tension of the liquid to prevent a constant flow of the liquid from the egress opening. Each conductor of the plurality of applicators can be coupled to one of one or more power sources operable to apply a charge to the liquid to overcome the surface tension and form at the egress opening of each applicator a plurality of jet sprays of the liquid applicable on a substrate to form a thin film. Additional embodiments are disclosed.
Abstract:
A spray apparatus for spraying a cosmetic liquid by way of electrostatic forces. The spray apparatus includes a fluid supply, at least one feed device, and at least one nozzle comprising a nozzle body, a connection flange, a nozzle channel, a spray opening, and an electrode. The fluid supply is connected to the feed device, the feed device is connected to the nozzle, and the electrode is arranged in the nozzle channel. The electrode is arranged in the nozzle channel such that it has a distance to the spray opening measured along a longitudinal axis of the nozzle channel of at most 2.1 mm and at least 0.0 mm.
Abstract:
An electrostatic oiling system for use with single blanks in batch systems having an open spray chamber without the need for a negative vacuum chamber. Further, the provided electrostatic oiling system may utilize induction beams and a charge wall that allows for utilization of a smaller vacuum system. Further, the provided electrostatic oiling system may provide variable blank coverage without the need for metered pumps.
Abstract:
Various exemplary illustrations of an electrode assembly for an electrostatic atomizer, for example for a rotation atomizer, and exemplary methods of making and/or using the same, are disclosed. An exemplary electrode assembly may not include an electrode holder arrangement for holding at least one electrode creating an electrostatic field about a symmetrical axis, wherein there is dielectric material for influencing a discharge current component extending in the direction of the symmetrical axis.
Abstract:
A voltage application device according to the present disclosure includes a voltage application circuit and a control circuit. The control circuit causes the voltage application circuit to alternately repeat a first mode and a second mode. The first mode is a mode that raises a voltage while time elapses, and generates a discharge current by promoting corona discharge to dielectric breakdown. The second mode is a mode that lowers the voltage to cut off the discharge current by causing a load to be in an overload state against the voltage application circuit. This can suppress an amount of ozone generated, while increasing an amount of radicals produced.