Abstract:
Methods of making fiber-containing prepregs are described. The methods may include the steps of providing a plurality of fibers, and applying a reactive resin composition to the plurality of fibers to make a mixture of the plurality of fibers and the resin composition. The reactive resin composition may include at least one of monomers and oligomers capable of polymerizing into a polymerized resin matrix. The mixture may be heated to a polymerization temperature where the monomers, oligomers, or both polymerize to form a fiber-resin amalgam that includes the polymerized resin matrix. The fiber-resin amalgam may be formed into the fiber-containing prepreg. Also described are methods of forming a fiber-reinforced composite that includes the prepreg.
Abstract:
An optical fiber recoating apparatus employs a variable size applicator for depositing a coating material in liquid form onto a portion of varying diameter optical fiber. The coating material is applied to the variable size applicator which is in continuous contact about the circumference of the optical fiber. At a constant speed the variable size applicator moves along the length of the optical fiber while simultaneously changing size to conform to the varying diameter of the optical fiber for applying a uniform coating thereto.
Abstract:
Apparatus and methods for applying adhesive to one or more narrow substrates, such as elastic strands, that are in motion. The apparatus includes a coating applicator and an air moving device mounted adjacent to the coating applicator. The coating applicator is capable of applying adhesive in the form of an adhesive filament in a pattern onto each narrow substrate. The air moving device includes one or more air discharge passages capable of directing a flow of air toward the narrow substrate. The flow of air transfers momentum to airborne sections of the adhesive filament for promoting coating uniformity on the narrow substrate.
Abstract:
Apparatus and methods for applying adhesive to one or more narrow substrates, such as elastic strands, that are in motion. The apparatus includes a coating applicator and an air moving device mounted adjacent to the coating applicator. The coating applicator is capable of applying adhesive in the form of an adhesive filament in a pattern onto each narrow substrate. The air moving device includes one or more air discharge passages capable of directing a flow of air toward the narrow substrate. The flow of air transfers momentum to airborne sections of the adhesive filament for promoting coating uniformity on the narrow substrate.
Abstract:
Continuous void-free uniform coatings are formed on filamentous articles by applying a voided or otherwise substantially uneven coating to at least some of the exposed portion of a filamentous article or to a rotating substrate. The filamentous article or substrate is passed through an improvement station containing a plurality of coating-wetted rolls that contact and re-contact the wet coating at different positions along the length of the filamentous article or rotating substrate, wherein the periods of the rolls improve the uniformity of the coating. For coatings applied to a rotating substrate, the uniform wet coating is transferred to the filamentous article. The final coating can be very thin, very uniform and completely or substantially void-free. The coating improvement can be quickly and easily obtained using low cost equipment.
Abstract:
A coating layer forming apparatus for minimizing the amount of the coating solution when forming a coating layer on a part and enhancing a dimensional precision of a formed surface of the coating layer. The coating layer forming apparatus has a rotation supporting device, a feeder (15), a layer former, and a coating removing device, maintains the inclined angle of a coating former for forming the coating layer at 30 to 70 degrees with respect to a tangential direction of rotation of a coating of a coating surface, and removes excess coating solution deposited on the coating former by a coating removing device.
Abstract:
According to one embodiment, a system for manufacturing a fully impregnated thermoplastic prepreg includes a mechanism for moving a fabric or mat and a drying mechanism that removes residual moisture from at least one surface of the fabric or mat. The system also includes a resin application mechanism that applies a reactive resin to the fabric or mat and a press mechanism that presses the coated fabric or mat to ensure that the resin fully saturates the fabric or mat. The system further includes a curing oven through which the coated fabric or mat is moved to polymerize the resin and thereby form a thermoplastic polymer so that upon exiting the oven, the fabric or mat is fully impregnated with the thermoplastic polymer. During at least a portion of the process, humidity in the vicinity of the coated fabric or mat is maintained at substantially zero.