Abstract:
Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.
Abstract:
A microfluidic device is provided. The microfluidic device includes a microtube having a hollow core. The microfluidic device further includes a plurality of nanopores extending radially outwards from an inner surface of the microtube.
Abstract:
The invention relates to a method and to a device for electrochemical micro- and/or nano-structuring, which are reliable, fast, simple, easy to implement, and reproducible. For this purpose, the invention provides a method of electrochemically structuring a sample (12) of conductive or semiconductor material that has opposite front and rear faces (11 and 13). The method comprises the steps consisting: in putting at least the front face (11) of the sample (12) into contact with at least one electrolytic solution (4) stored in at least one tank (3); in placing at least one counter-electrode (6) in an electrolyte (4) in register with the front face (11) of the sample (12), said front face (11) being for structuring; in placing at least one working electrode (7) presenting structuring patterns (14) into dry ohmic contact with the rear face (13) of the sample (12); and in applying an electric current between at least one counter-electrode (6) and at one least working electrode (7) that are substantially in register with each other in order to obtain an electrochemical reaction at the interface between the front face (11) of the sample (12) and the electrolyte (4) with current density that is modulated by the structuring patterns (14) of the working electrode (7) in order to perform etching and/or deposition on the front face (11) of the sample (12).
Abstract:
Nanofluidic passages such as nanochannels and nanopores are closed or opened in a controlled manner through the use of a feedback system. An oxide layer is grown or removed within a passage in the presence of an electrolyte until the passage reaches selected dimensions or is closed. The change in dimensions of the nanofluidic passage is measured during fabrication. The ionic current level through the passage can be used to determine passage dimensions. Fluid flow through an array of fluidic elements can be controlled by selective oxidation of fluidic passages between elements.
Abstract:
A micromechanical component is described which includes a substrate; a monocrystalline layer, which is provided above the substrate and which has a membrane area; a cavity that is provided underneath the membrane area; and one or more porous areas, which are provided inside the monocrystalline layer and which have a doping that is higher than that of the surrounding layer.
Abstract:
A microelectromechanical structure is formed by depositing sacrificial and structural material over a substrate to form a structural layer on a component electrically attached with the substrate. The galvanic potential of the structural layer is greater than the galvanic potential of the component. At least a portion of the structural material is covered with a protective material that has a galvanic potential less than or equal to the galvanic potential of the component. The sacrificial material is removed with a release solution. At least one of the protective material and release solution is surfactanated, the surfactant functionalizing a surface of the component.
Abstract:
A microelectromechanical structure is formed by depositing sacrificial and structural material over a substrate to form a structural layer on a component electrically attached with the substrate. The galvanic potential of the structural layer is greater than the galvanic potential of the component. At least a portion of the structural material is covered with a protective material that has a galvanic potential less than or equal to the galvanic potential of the component. The sacrificial material is removed with a release solution. At least one of the protective material and release solution is surfactanated, the surfactant functionalizing a surface of the component.
Abstract:
This invention provides a miniaturized silicon thermal flow sensor with improved characteristics, based on the use of two series of integrated thermocouples (6, 7) on each side of a heater (4), all integrated on a porous silicon membrane (2) on top of a cavity (3). Porous silicon (2) with the cavity (3) underneath provides very good thermal isolation for the sensor elements, so as the power needed to maintain the heater (4) at a given temperature is very low. The formation process of the porous silicon membrane (2) with the cavity (3) underneath is a two-step single electrochemical process. It is based on the fact that when the anodic current is relatively low, we are in a regime of porous silicon formation, while if this current exceeds a certain value we turn into a regime of electropolishing. The process starts at low current to form porous silicon (2) and it is then turned into electropolishing conditions to form the cavity (3) underneath. Various types of thermal sensor devices, such as flow sensors, gas sensors, IR detectors, humidity sensors and thermoelectric power generators are described using the proposed methodology. Furthermore the present invention provides a method for the formation of microfluidic channels (16) using the same technique of porous silicon (17) and cavity (16) formation.
Abstract:
A micromechanical component is described which includes a substrate (1); a monocrystalline layer (10), which is provided above the substrate (1) and which has a membrane area (10a); a cavity (50) that is provided underneath the membrane area (10a); and one or more porous areas (150; 150null), which are provided inside the monocrystalline layer (10) and which have a doping (nnull; pnull) that is higher than that of the surrounding layer (10).
Abstract translation:描述了一种微机械部件,其包括基板(1); 单晶层(10),其设置在所述基板(1)的上方,并且具有膜区域(10a); 设置在膜区域(10a)下方的空腔(50); 以及一个或多个多孔区域(150; 150'),其设置在单晶层(10)的内部并且具有比周围层(10)的掺杂(n +; p +)更高的掺杂 )。
Abstract:
A microelectromechanical structure is formed by depositing sacrificial and structural material over a substrate to form a structural layer on a component electrically attached with the substrate. The galvanic potential of the structural layer is greater than the galvanic potential of the component. At least a portion of the structural material is covered with a protective material that has a galvanic potential less than or equal to the galvanic potential of the component. The sacrificial material is removed with a release solution. At least one of the protective material and release solution is surfactanated, the surfactant functionalizing a surface of the component.