Method for electrochemically structuring a conductive or semiconductor material, and device for implementing it
    23.
    发明授权
    Method for electrochemically structuring a conductive or semiconductor material, and device for implementing it 失效
    用于电化学构造导电或半导体材料的方法,以及用于实现它的装置

    公开(公告)号:US08329017B2

    公开(公告)日:2012-12-11

    申请号:US12281595

    申请日:2007-02-06

    Applicant: Denis Buttard

    Inventor: Denis Buttard

    Abstract: The invention relates to a method and to a device for electrochemical micro- and/or nano-structuring, which are reliable, fast, simple, easy to implement, and reproducible. For this purpose, the invention provides a method of electrochemically structuring a sample (12) of conductive or semiconductor material that has opposite front and rear faces (11 and 13). The method comprises the steps consisting: in putting at least the front face (11) of the sample (12) into contact with at least one electrolytic solution (4) stored in at least one tank (3); in placing at least one counter-electrode (6) in an electrolyte (4) in register with the front face (11) of the sample (12), said front face (11) being for structuring; in placing at least one working electrode (7) presenting structuring patterns (14) into dry ohmic contact with the rear face (13) of the sample (12); and in applying an electric current between at least one counter-electrode (6) and at one least working electrode (7) that are substantially in register with each other in order to obtain an electrochemical reaction at the interface between the front face (11) of the sample (12) and the electrolyte (4) with current density that is modulated by the structuring patterns (14) of the working electrode (7) in order to perform etching and/or deposition on the front face (11) of the sample (12).

    Abstract translation: 本发明涉及电化学微观和/或纳米结构的方法和装置,它们是可靠的,快速的,简单的,易于实现的和可重复的。 为此,本发明提供了一种电化学构造具有相对的前表面和后表面(11和13)的导电或半导体材料的样品(12)的方法。 该方法包括以下步骤:至少将样品(12)的前表面(11)与至少一个储存在至少一个罐(3)中的电解液(4)接触; 在将至少一个对电极(6)放置在与样品(12)的前表面(11)对准的电解质(4)中,所述前表面(11)用于结构化; 在将至少一个工作电极(7)放置成与所述样品(12)的后表面(13)干法欧姆接触的结构图案(14)中; 并且在基本上彼此对准的至少一个对电极(6)和至少一个至少工作电极(7)之间施加电流,以便在所述前表面(11)之间的界面处获得电化学反应, 的样品(12)和电解质(4),其电流密度由工作电极(7)的结构图案(14)调制,以便在所述工作电极(7)的正面(11)上进行蚀刻和/或沉积 样品(12)。

    FEEDBACK CONTROL OF DIMENSIONS IN NANOPORE AND NANOFLUIDIC DEVICES
    24.
    发明申请
    FEEDBACK CONTROL OF DIMENSIONS IN NANOPORE AND NANOFLUIDIC DEVICES 有权
    纳米和纳米级器件尺寸反馈控制

    公开(公告)号:US20120103821A1

    公开(公告)日:2012-05-03

    申请号:US13021544

    申请日:2011-02-04

    Abstract: Nanofluidic passages such as nanochannels and nanopores are closed or opened in a controlled manner through the use of a feedback system. An oxide layer is grown or removed within a passage in the presence of an electrolyte until the passage reaches selected dimensions or is closed. The change in dimensions of the nanofluidic passage is measured during fabrication. The ionic current level through the passage can be used to determine passage dimensions. Fluid flow through an array of fluidic elements can be controlled by selective oxidation of fluidic passages between elements.

    Abstract translation: 纳米流体通道如纳米通道和纳米孔通过使用反馈系统以受控的方式封闭或打开。 在存在电解液的情况下,在通道内生长或除去氧化物层,直到通道达到所选尺寸或闭合。 在制造过程中测量纳米流体通道的尺寸变化。 通过通道的离子电流水平可用于确定通道尺寸。 通过流体元件阵列的流体流动可以通过元件之间的流体通道的选择性氧化来控制。

    Surfactant-enhanced protection of micromechanical components from galvanic degradation
    26.
    发明授权
    Surfactant-enhanced protection of micromechanical components from galvanic degradation 失效
    表面活性剂增强了微机械部件对电流退化的保护

    公开(公告)号:US07560037B2

    公开(公告)日:2009-07-14

    申请号:US11213466

    申请日:2005-08-26

    Abstract: A microelectromechanical structure is formed by depositing sacrificial and structural material over a substrate to form a structural layer on a component electrically attached with the substrate. The galvanic potential of the structural layer is greater than the galvanic potential of the component. At least a portion of the structural material is covered with a protective material that has a galvanic potential less than or equal to the galvanic potential of the component. The sacrificial material is removed with a release solution. At least one of the protective material and release solution is surfactanated, the surfactant functionalizing a surface of the component.

    Abstract translation: 通过将牺牲和结构材料沉积在衬底上以在与衬底电连接的部件上形成结构层来形成微机电结构。 结构层的电位大于元件的电位。 结构材料的至少一部分被保护材料覆盖,该保护材料具有小于或等于部件的电位的电位。 牺牲材料用释放溶液除去。 保护材料和释放溶液中的至少一种被表面活性化,表面活性剂对组分的表面进行官能化。

    Surfactant-enhanced protection of micromechanical components from galvanic degradation
    27.
    发明申请
    Surfactant-enhanced protection of micromechanical components from galvanic degradation 失效
    表面活性剂增强了微机械部件对电流退化的保护

    公开(公告)号:US20070289940A1

    公开(公告)日:2007-12-20

    申请号:US11213466

    申请日:2005-08-26

    Abstract: A microelectromechanical structure is formed by depositing sacrificial and structural material over a substrate to form a structural layer on a component electrically attached with the substrate. The galvanic potential of the structural layer is greater than the galvanic potential of the component. At least a portion of the structural material is covered with a protective material that has a galvanic potential less than or equal to the galvanic potential of the component. The sacrificial material is removed with a release solution. At least one of the protective material and release solution is surfactanated, the surfactant functionalizing a surface of the component.

    Abstract translation: 通过将牺牲和结构材料沉积在衬底上以在与衬底电连接的部件上形成结构层来形成微机电结构。 结构层的电位大于元件的电位。 结构材料的至少一部分被保护材料覆盖,该保护材料具有小于或等于部件的电位的电位。 牺牲材料用释放溶液除去。 保护材料和释放溶液中的至少一种被表面活性化,表面活性剂对组分的表面进行官能化。

    Low power silicon thermal sensors and microfluidic devices based on the use of porous sealed air cavity technology or microchannel technology
    28.
    发明授权
    Low power silicon thermal sensors and microfluidic devices based on the use of porous sealed air cavity technology or microchannel technology 失效
    基于使用多孔密封空腔技术或微通道技术的低功率硅热传感器和微流体装置

    公开(公告)号:US07233000B2

    公开(公告)日:2007-06-19

    申请号:US10502465

    申请日:2003-01-16

    Abstract: This invention provides a miniaturized silicon thermal flow sensor with improved characteristics, based on the use of two series of integrated thermocouples (6, 7) on each side of a heater (4), all integrated on a porous silicon membrane (2) on top of a cavity (3). Porous silicon (2) with the cavity (3) underneath provides very good thermal isolation for the sensor elements, so as the power needed to maintain the heater (4) at a given temperature is very low. The formation process of the porous silicon membrane (2) with the cavity (3) underneath is a two-step single electrochemical process. It is based on the fact that when the anodic current is relatively low, we are in a regime of porous silicon formation, while if this current exceeds a certain value we turn into a regime of electropolishing. The process starts at low current to form porous silicon (2) and it is then turned into electropolishing conditions to form the cavity (3) underneath. Various types of thermal sensor devices, such as flow sensors, gas sensors, IR detectors, humidity sensors and thermoelectric power generators are described using the proposed methodology. Furthermore the present invention provides a method for the formation of microfluidic channels (16) using the same technique of porous silicon (17) and cavity (16) formation.

    Abstract translation: 本发明提供了一种基于在加热器(4)的每一侧上使用两个集成的热电偶(6,7)的系列,具有改进的特性的小型化硅热流量传感器,它们全部集成在顶部的多孔硅膜(2)上 的腔(3)。 具有下面的空腔(3)的多孔硅(2)为传感器元件提供了非常好的热隔离,因此将加热器(4)保持在给定温度所需的功率非常低。 多孔硅膜(2)与下面的腔(3)的形成过程是两步单电化学过程。 这是基于以下事实:当阳极电流相对较低时,我们处于多孔硅形成的状态,而如果该电流超过一定值,则我们变成电解抛光的方式。 该工艺以低电流开始形成多孔硅(2),然后转化为电解抛光条件以形成下面的空腔(3)。 使用所提出的方法描述了各种类型的热传感器装置,例如流量传感器,气体传感器,红外探测器,湿度传感器和热电发电机。 此外,本发明提供了使用与多孔硅(17)和空腔(16)相同的技术形成微流体通道(16)的方法。

    Micromechanical component and corresponding production method
    29.
    发明申请
    Micromechanical component and corresponding production method 失效
    微机械部件及相应的生产方式

    公开(公告)号:US20040080004A1

    公开(公告)日:2004-04-29

    申请号:US10450362

    申请日:2003-11-12

    Abstract: A micromechanical component is described which includes a substrate (1); a monocrystalline layer (10), which is provided above the substrate (1) and which has a membrane area (10a); a cavity (50) that is provided underneath the membrane area (10a); and one or more porous areas (150; 150null), which are provided inside the monocrystalline layer (10) and which have a doping (nnull; pnull) that is higher than that of the surrounding layer (10).

    Abstract translation: 描述了一种微机械部件,其包括基板(1); 单晶层(10),其设置在所述基板(1)的上方,并且具有膜区域(10a); 设置在膜区域(10a)下方的空腔(50); 以及一个或多个多孔区域(150; 150'),其设置在单晶层(10)的内部并且具有比周围层(10)的掺杂(n +; p +)更高的掺杂 )。

    Surfactant-enhanced protection of micromechanical components from galvanic degradation
    30.
    发明申请
    Surfactant-enhanced protection of micromechanical components from galvanic degradation 有权
    表面活性剂增强了微机械部件对电流退化的保护

    公开(公告)号:US20040065637A1

    公开(公告)日:2004-04-08

    申请号:US10242213

    申请日:2002-09-12

    Abstract: A microelectromechanical structure is formed by depositing sacrificial and structural material over a substrate to form a structural layer on a component electrically attached with the substrate. The galvanic potential of the structural layer is greater than the galvanic potential of the component. At least a portion of the structural material is covered with a protective material that has a galvanic potential less than or equal to the galvanic potential of the component. The sacrificial material is removed with a release solution. At least one of the protective material and release solution is surfactanated, the surfactant functionalizing a surface of the component.

    Abstract translation: 通过将牺牲和结构材料沉积在衬底上以在与衬底电连接的部件上形成结构层来形成微机电结构。 结构层的电位大于元件的电位。 结构材料的至少一部分被保护材料覆盖,该保护材料具有小于或等于部件的电位的电位。 牺牲材料用释放溶液除去。 保护材料和释放溶液中的至少一种被表面活性化,表面活性剂对组分的表面进行官能化。

Patent Agency Ranking