Abstract:
Embodiments of hybrid microfluidic assemblies comprise at least one microstructure that is formed of transparent material and is substantially free of non-transparent material and further comprise at least one microstructure that is formed of non-transparent material and is substantially free of transparent material.
Abstract:
A stacked semiconductor device includes a CMOS device and a MEMS device. The CMOS device includes a multilayer interconnect with metal elements disposed over the multilayer interconnect. The MEMS device includes metal sections with a first dielectric layer disposed over the metal sections. A cavity in the first dielectric layer exposes portions of the metal sections. A dielectric stop layer is disposed at least over the interior surface of the cavity. A movable structure is disposed over a front surface of the first dielectric layer and suspending over the cavity. The movable structure includes a second dielectric layer over the front surface of the first dielectric layer and suspending over the cavity, metal features over the second dielectric layer, and a flexible dielectric membrane over the metal features. The CMOS device is bonded to the MEMS device with the metal elements toward the flexible dielectric membrane.
Abstract:
An electronic device is obtained in such a way that a MEMS substrate having a MEMS element mounted thereon and a CMOS substrate are bonded together at bonding surfaces and with a bonding material M having fluidity, wherein the MEMS substrate has a bonding projection part provided to project from a substrate main body and having the bonding surface and a gap formation part disposed between the bonding projection part and the MEMS element, and the gap formation part is supported by the bonding projection part via a plurality of support pieces extending from the bonding projection part and forms reception gaps, which are capable of receiving the bonding material M extruded from the bonding surface to the side of the MEMS element, between the wall surface thereof and the bonding projection part.
Abstract:
A method for producing a functional unit with a gas converter (1) and a flame ionization detector (10) is produced with the gas converter (1) and the flame ionization detector (10) being connected together as parts of a multi-layer ceramic (6).
Abstract:
The present disclosure provides a method for fabricating semiconductor devices having high-precision gaps. The method includes steps of providing a first wafer; forming two or more regions having various ion dosage concentrations on a first surface of the first wafer; thermally oxidizing the first wafer so as to grow oxide layers with various thicknesses on the first surface of the first wafer; and bonding a second wafer to the thickest oxide layer of the first wafer so as to form one or more gaps.
Abstract:
A microfluidic chip includes a thin biaxially-oriented polyethylene terephthalate (“BoPET”) film and a micro-channel in the BoPET film. A method for manufacturing a microfluidic chip includes coating UV epoxy on a first side of a BoPET film, placing the BoPET film on a first substrate with the first side facing the first substrate, curing the UV epoxy on the first side of the BoPET film to attach the BoPET film on the first substrate; forming at least one microfluidic pathway in the BoPET film, coating UV epoxy on a first side of a second substrate, placing the second substrate on the BoPET film with the first side of the second substrate facing a second side of the BoPET film, and curing the UV epoxy on the first side of the second substrate to attach the BoPET film to the second substrate. The microfluidic chip may be a multi-layered chip.
Abstract:
A MEMS chip includes a cap layer and a composite device layer. The cap layer includes a substrate. The substrate has a first region and a second region, wherein the first region includes plural first trenches and the second region has plural second trenches. The first region has a first etch pattern density and the second region has a second etch pattern density, wherein the first etch pattern density is higher than the second etch pattern density to form chambers of different pressures.
Abstract:
A stacked semiconductor device includes a CMOS device and a MEMS device. The CMOS device includes a multilayer interconnect with metal elements disposed over the multilayer interconnect. The MEMS device includes metal sections with a first dielectric layer disposed over the metal sections. A cavity in the first dielectric layer exposes portions of the metal sections. A dielectric stop layer is disposed at least over the interior surface of the cavity. A movable structure is disposed over a front surface of the first dielectric layer and suspending over the cavity. The movable structure includes a second dielectric layer over the front surface of the first dielectric layer and suspending over the cavity, metal features over the second dielectric layer, and a flexible dielectric membrane over the metal features. The CMOS device is bonded to the MEMS device with the metal elements toward the flexible dielectric membrane.
Abstract:
Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
Abstract:
A method for at least partially inserting a plug into a hole, said method comprising the steps of a) providing a at least one substrate with at least one hole wherein said at least one hole has a largest dimension of from 1 μm to 300 μm, b) providing a piece of material, wherein said piece of material has a larger dimension than said at least one hole, c) pressing said piece of material against the hole with a tool so that a plug is formed, wherein at least a part of said piece of material is pressed into said hole, d) removing the tool from the piece of material. There is further disclosed a plugged hole manufactured with the method. One advantage of an embodiment is that an industrially available wire bonding technology can be used to seal various cavities. The existing wire bonding technology makes the plugging fast and cheap.