Abstract:
Mixture of (a) polar oil-soluble nitrogen compounds which are capable of sufficiently dispersing paraffin crystals precipitated out under cold conditions in fuels, (b) oil-soluble acid amides formed from polyamides having from 2 to 1000 carbon atoms and C8- to C30-fatty acids or fatty acid-like compounds comprising free carboxyl groups and (c) oil-soluble reaction products formed from α,β-dicarboxylic acids having 4 to 300 carbon atoms or derivatives thereof and primary alkylamines. The mixture mentioned is suitable as a paraffin dispersant in fuels, especially those having a biodiesel content.
Abstract:
An additive composition comprising at least one antistatic agent; and a strong acid, wherein the at least one antistatic agent and the strong acid are present in the additive composition in a ratio of from about 1:0.05 to about 1:1 is disclosed. There is also disclosed a fuel composition comprising a middle distillate fuel and the additive composition. Methods of making and using the compositions are also disclosed, Further, methods of improving and/or prolonging the conductivity of a fuel are disclosed.
Abstract:
The invention relates to additives for improving cold-flow and lubricating properties of fuel oils, comprising A) 5-95% by weight of at least one oil-soluble amphiphile of the formula in which R1 is an alkyl, alkenyl, hydroxyalkyl or aromatic radical having 1 to 50 carbon atoms, X is NH, NR3, O or S, y is 1, 2, 3 or 4, R2 is hydrogen or an alkyl radical carrying hydroxyl groups and having 2 to 10 carbon atoms and R3 is an alkyl radical carrying nitrogen and/or hydroxyl groups and having 2 to 10 carbon atoms or C1-C20-alkyl, and B) 5 to 95% by weight of a terpolymer containing from 10 to 35 mol % of structural units derived from the vinyl ester of a carboxylic acid having 2 to 4 carbon atoms, from 1 to 15 mol % of structural units derived from the vinyl ester of a neocarboxylic acid having 8 to 15 carbon atoms, and structural units of ethylene to 100 mol %, having a melt viscosity, measured at 140° C., of from 20 to 10,000 mPas.
Abstract:
Disclosed is a multiphase fuel composition formed of an emulsion containing (a) a distillate fuel first phase, (b) a second phase formed of boric acid and a liquid that is a solvent for boric acid, but immiscible in the first phase, such as glycerol, and (c) a surfactant.
Abstract:
A multiphase distillate fuel composition includes an emulsion comprising a first phase comprising a diesel fuel; a second phase comprising glycerol and boric acid; and a surfactant. A lubricant composition includes a grease and a mixture of boric acid with different particle sizes.
Abstract:
The invention provides a fuel oil composition comprising a fuel oil of animal or vegetable origin, in which a total of more than 6% by weight of palmitic acid methyl ester and stearic acid methyl ester are present, and, as an additive, A) at least one copolymer which contains 10-20 mol % of structural units of at least one vinyl ester and 80-90 mol % of structural units of ethylene, and B) at least one comb polymer containing structural units formed from B1) at least one olefin as monomer 1, which bears at least one C8-C18-alkyl radical on the olefinic double bond, and B2) at least one ethylenically unsaturated dicarboxylic acid as monomer 2, which bears at least one C8-C16-alkyl radical bonded via an amide and/or imide group, in which the parameter Q Q = ∑ i w 1 i · n 1 i + ∑ j w 2 j · n 2 j in which w1 is the molar proportion of the individual chain lengths n1 in the alkyl radicals of monomer 1, w2 is the molar proportion of the individual chain lengths n2 in the alkyl radicals of the amide and/or imide groups of monomer 2, n1 are the individual chain lengths in the alkyl radicals of monomer 1, n2 are the individual chain lengths in the alkyl radicals of the amide and/or imide groups of monomer 2, i is the serial variable for the chain lengths in the alkyl radicals of monomer 1, and j is the serial variable for the chain lengths in the alkyl radicals of the amide and/or imide groups of monomer 2, assumes values of from 23 to 27.
Abstract:
The frictional pressure drop, or drag, of hydrocarbon fluids flowing through pipelines of various lengths is preferentially lowered by dissolving therein polymeric drag reducer suspensions exhibiting bi- or multimodal particle size distributions. Drag reducers having larger particle sizes dissolve more slowly than drag reducers having smaller particle sizes, and vice versa. By using at least bi-modal particle size distributions, the drag reduction effect may be distributed more uniformly over the length of the pipeline where smaller sized particles dissolve sooner after injection (upstream in the pipeline), and larger sized particles dissolve later (further along the pipeline). Drag reducer suspensions with bi- or multimodal particle size distributions may be made by suspension polymerization.
Abstract:
Mineral oil compositions with trace portions of additives contain as additive a comb polymer containing ester linkages, either based on a) ethylene-vinylester copolymers modified by hydroxy groups or glycidyl groups with molecular mass weight averages from 3000 to 50000 and an ethylene portion of 50 to 90 mass %, and b) partially imidated and/or partially esterified maleic anhydride copolymers, wherein in the comb polymer based on a) and b) the modified ethylene-vinylester copolymer component is connected by means of ester linkages to the partially imidated and/or partially esterified maleic anhydride copolymer component, or a comb polymer containing ester linkages based on c) ethylene-vinylester copolymers modified by acid and/or acid anhydride groups with molecular mass weight averages from 3000 to 50000 and an ethylene portion of 50 to 90 mass %, and d) polyalcohols partially esterified with C12-C40-monocarboxylic acids wherein in the comb polymer based on c) and d) the ethylene-vinylester copolymer component modified by acid and/or acid anhydride groups is connected by means of ester linkages with the polyalcohol component partially esterified with C2-C40-monocarboxylic acids. The mineral oil compositions are suitable as flowable media to be transported at low temperatures and as mineral oil fuels with high lubricity and flowability.
Abstract:
An additive mixture as component of compositions of mineral oil as the main component and trace portions of an additive mixture contains the additive components a) ethylene-vinylester copolymers with molecular mass weight averages from 3000 to 50000 and an ethylene proportion of 50 to 90 mass %, and b) mixed esters of glycerine in which 50 to 80 mol % of the hydroxy groups are esterified with unsaturated C12-C40 monocarboxylic acids and 20 to 50 mol % of the hydroxy groups are esterified with partially imidated and/or partially esterified maleic anhydride copolymers, and/or c) partially and/or completely imidated copolymers consisting of maleic anhydride and α-methylstyrene with molecular mass number averages from 1500 to 15000 and at least one terminal group based on dimeric α-methyl styrene, and/or d) wax compositions based on natural starting materials of type d1) wax-like oligomeric esters based on glyceryl monostearate and dimeric acid and/or d2) wax esters with vaseline-like consistency, based on at least two different straight-chain and/or branched C14-C36-alcohols and dimeric acid whereby the content of the additive mixture in the mineral oil is 0.005 to 1 mass % and the mass proportion of the additive components a/b or a/c or a/d is in the range from 10:90 to 90:10, respectively. The mineral oil compositions are suitable as flowable media to be transported at low temperatures and as mineral oil fuels with high lubricity and flowability.
Abstract:
This invention provides a composition and a method of using a composition containing an imidazoline, optionally containing a paraffin inhibitor, for improving the pour point of liquid hydrocarbons, such as crude oil and petroleum fuel, and/or inhibiting or reducing the formation of paraffin deposits in such liquids.