Abstract:
A UV exposure dosimetry system includes at least one UV sensor that accurately measures the UV irradiance intensity. The UV dosimetry system integrates the measured UV irradiance intensity over time to calculate the real-time UV dosage and the vitamin D production by taking into account factors comprising UV sensor location, body surface area, clothing coverage, and sunscreen usage. Based on the measurement, the system can predict the time remaining to skin burn and the time remaining to reach daily goal of vitamin D production. The system can also estimate UV intensity for a time in the future at a geographic location based on the forecast UV index data, and predict UV dose and vitamin D generation for the user corresponding to user defined scenarios. The UV dosimetry system supports multi-user control through an advanced and user friendly input and output interface.
Abstract:
A component measurement apparatus includes: a sensor module that receives reflected light and outputs a signal corresponding to light intensity of the reflected light; a calibration plate that outputs first reflected light to the sensor module, the first reflected light being used for comparing the light intensity of the reflected light; and a calibration unit that switches the input reflected light to the sensor module between the second reflected light reflected at a measured portion, and the first reflected light.
Abstract:
A method and a lighting control system for automatically determining a calibration curve for use in daylight harvesting applications. The lighting control system comprises a light sensor configured for recording light levels and a load controller configured for provide a dimmed output to a lighting load. The calibration curve comprises a calibration slope (SC) defined by a calibration coordinate (CC) and a night coordinate (CN). The calibration coordinate (CC) comprises a calibration dimming level (DC) set by a user and a calibration light level (LC) recorded by the light sensor when the lighting load is set to the calibration dimming level (DC). The night coordinate (CN) comprises a night scene dimming level (DN) and a night scene light level (LN), wherein the night scene light level (LN) comprises a difference between a sunlight plus night scene light level (LNS) recorded by the light sensor when the lighting load is set to the night scene dimming level (DN) and a sunlight level (LS) recorded by the light sensor when the lighting load is turned off.
Abstract:
A calibration system is provided including an aperture layer, a lens layer, an optical filter, a pixel layer and a regulator. The aperture layer defines a calibration aperture. The lens layer includes a calibration lens substantially axially aligned with the calibration aperture. The optical filter is adjacent the lens layer opposite the aperture layer. The pixel layer is adjacent the optical filter opposite the lens layer and includes a calibration pixel substantially axially aligned with the calibration lens. The calibration pixel detects light power of an illumination source that outputs a band of wavelengths of light as a function of a parameter. The regulator modifies the parameter of the illumination source based on a light power detected by the calibration pixel.
Abstract:
A light sensitive circuit includes a light sensing capacitor and a driving transistor. The light sensing capacitor is configured to sense light of a predetermined one or more wavelengths. The driving transistor includes a gate electrode electrically connected to the light sensing capacitor and is configured to generate a light sensing current according to a voltage of the gate electrode in the driving transistor. A light sensing accuracy and a light sensing signal to noise ratio (SNR) of the display apparatus including a plurality of such light sensing capacitors may be improved relative to ones that do not include such light sensing capacitors.
Abstract:
An imaging system includes an array of photodetectors and electronic circuitry associated with the photodetectors to read intensity values from the photodetectors. The electronic circuitry can include an integrator with an integrator capacitor having a nominal capacitance, wherein a gain of the electronic circuitry associated with a photodetector can depend at least in part on the actual capacitance of the integrator capacitor, the actual capacitance differing from the nominal capacitance. The imaging system can be configured to determine a gain factor that depends at least in part on the actual capacitance and/or a signal voltage input to the integrator. The imaging system can be configured to apply the gain factor based at least in part on the actual capacitance of the integrator capacitor calculated. The imaging system can be a thermal imaging system and may include an infrared camera core.
Abstract:
Provided herein are a multi-channel receiver optical sub-assembly and a manufacturing method thereof. The multi-channel receiver optical sub-assembly includes a PLC chip having a first side into which an optical signal is received and a second side from which the received signal is outputted, with an inclined surface formed on the second side of the PLC chip at a preset angle, a PD carrier bonded onto the PLC chip and made of a glass material, and an SI-PD bonded onto the PD carrier, a lens being integrated therein. The PLC chip, the PD carrier, and the SI-PD are passively aligned by at least one alignment mark and then are bonded.
Abstract:
A color measuring device includes a color difference meter module. The color difference meter module includes: a main detecting unit having an optical detecting unit configured to receive light introduced from an incident lens to generate a first current depending on a color, a first measuring unit configured to measure the first current, a sub-detecting unit having a dark detecting unit disposed adjacent to the main detecting unit and blocking the light to generate a second current in a dark state, a second measuring unit configured to measure the second current, a leakage measuring unit including a charging unit provided in the second measuring unit and charged with a predetermined set current, and measures a third current leaking from the charging unit, and a control unit that corrects the first current by reflecting the second current and the third current.
Abstract:
A scanning optical system manufacturing method includes receiving a scanning beam, emitted from a scanning unit including an incident optical system and a deflecting device and passed through an image-forming optical system, in an area having a width in the main scanning direction narrower than a spot diameter of the scanning beam by a light-receiving unit configured to be capable of being displaced at each image height position in the main scanning direction, calculating, based on an output of the light-receiving unit, a peak light quantity at each image height position of the scanning beam, smoothing distribution data of the peak light quantity at each of the image height position acquired by the calculating, and determining, based on the data acquired by the smoothing, either nondefective/defective states of the scanning unit and the image-forming optical system or a nondefective/defective state of only the image-forming optical system.
Abstract:
A biasing voltage generating circuit for generating a required reverse biasing voltage of an avalanche photodiode (APD) includes: a boost power converter configured to operably convert an input voltage into a higher output voltage according to a feedback signal and a reference signal, and to apply the output voltage to be a reverse biasing voltage of the APD; a reference signal generating circuit configured to operably generate the reference signal; and a control circuit. The control circuit includes: a signal sensing circuit configured to operably generate a sensed signal corresponding to an output current of the APD; an analog-to-digital converter (ADC) configured to operably convert the sensed signal into a digital signal; and a processing circuit configured to operably adjust the feedback signal or the reference signal according to the digital signal to thereby control the boost power converter to adjust the output voltage.