Abstract:
Provided is a terahertz wave spectrometry system that is capable of identifying analyzing target molecules contained in an analyte even if the analyte contains water, by activating a water remover to remove water according a comparison of absorption spectrums so that water in the analyte is easily removed without causing the analyzing target molecules to disappear due to decomposition or denaturation.
Abstract:
A reflectometer for measuring absorption of light in selected regions of the light spectrum by a diffuse reflector. The reflectometer is adapted to precisely measure absorption resulting from the constituents present in body fluids. The sample to be measured is illuminated by a focussed light source at an angle of 45.degree. to its surface. The light diffusely reflected about the normal to the sample falls on a small round bundle of optical fibers. At the opposite end of the bundle, the fibers are arranged into a narrow rectangle. This rectangle forms the entrance slit for a concave holographic diffraction grating. The grating forms images of this entrance slit spectrally separated over a flat field suitable for recording the spectrum on film or on an array of discrete detectors.
Abstract:
A reflectometer for measuring absorption of light in selected regions of the light spectrum by a diffuse reflector. The reflectometer is adapted to precisely measure absorption resulting from the constituents present in body fluids. The sample to be measured is illuminated by a focused light source at an angle of 45.degree. to its surface. The light diffusely reflected about the normal to the sample falls on a small round bundle of optical fibers at the opposite end of the bundle, the fibers are arranged into a narrow rectangle. This rectangle forms the entrance slit for a concave holographic diffraction grating. The grating forms images of this entrance slit spectrally separated over a flat field suitable for recording the spectrum on film or on an array of discrete detectors.
Abstract:
A monochromator utilizing a single light source productive of a uniformly intense, single beam, single wavelength coaxial beam output or alternatively, a single beam selected dual wavelength coaxial beam output.
Abstract:
A single beam wavelength scanning spectrophotometer comprises means for passing radiation from a radiation source (1) to a radiation detector (4) over a defined path which includes a monochromator (2) capable of being scanned across a selected wavelength range, means (7) for storing a first set of signals representative of the radiation falling on the radiation detector, the first set of signals being spread across the selected wavelength range to form a first spectral response, means for inserting a sample (3) in the defined path, means for producing a second set of signals representative of the radiation falling on the radiation detector when the sample (3) is inserted in the defined path, the second set of signals being spread across a selected wavelength range to form a second spectral response, and means (7) for calculating the transmittance or absorbance of the sample at desired wavelengths from the first and second spectral responses. The ambient temperature in the region of the radiation detector (5) is monitored (6) and the first and/or second sets of signals are modified in dependence on the ambient temperature when the first and second set of signals are produced.