Abstract:
A method for manufacturing an electron source includes steps of sandwiching a welding object in which a tip of an electron emission material and a tungsten filament overlap in direct contact between a pair of welding electrodes, and welding the tip and the tungsten filament by causing a current to flow while pressing forces are applied to the welding object by the pair of welding electrodes. A thickness of the welding object is within a range of 50 to 500 μm.
Abstract:
A method for manufacturing an electron source includes steps of sandwiching a welding object in which a tip of an electron emission material and a tungsten filament overlap in direct contact between a pair of welding electrodes, and welding the tip and the tungsten filament by causing a current to flow while pressing forces are applied to the welding object by the pair of welding electrodes. A thickness of the welding object is within a range of 50 to 500 μm.
Abstract:
A thermionic dispenser cathode having a refractory metal matrix with scandium and barium compounds in contact with the metal matrix and methods for forming the same. The invention utilizes atomic layer deposition (ALD) to form a nanoscale, uniform, conformal distribution of a scandium compound on tungsten surfaces and further utilizes in situ high pressure consolidation/impregnation to enhance impregnation of a BaO-CaO-Al2O3 based emissive mixture into the scandate-coated tungsten matrix or to sinter a tungsten/scandate/barium composite structure. The result is a tungsten-scandate thermionic cathode having improved emission.
Abstract translation:具有与金属基体接触的钪和钡化合物的难熔金属基体的热离子分配器阴极及其形成方法。 本发明利用原子层沉积(ALD)在钨表面上形成钪化合物的纳米尺度均匀的共形分布,并进一步利用原位高压固结/浸渍以增强BaO-CaO-Al 2 O 3基发射混合物的浸渍 钪酸盐涂层的钨基体或烧结钨/钪酸盐/钡复合结构。 结果是具有改善的发射的钨 - 钪酸盐热阴极。
Abstract:
A tungsten wire containing 1 to 10% by mass of rhenium has a point which indicates a 2% elongation within a quadrangle formed by joining points with straight lines, where the values of x and y are point (20, 75), point (20, 87), point (90, 75), and point (90, 58), in this order, wherein the wire diameter of the aforementioned tungsten wire is represented by x nullm, and the elongation of the tungsten wire is 2% after electrically heating with an electrical current which is a ratio of y % to the fusion current (FC) at the wire diameter x nullm, and wherein a semi-logarithmic system of coordinates is expressed by a horizontal axis using a logarithmic scale of the aforementioned wire diameter x and a vertical axis using a normal scale of ratio y to the fusion current. According to the above-described configuration, a tungsten wire having a great elongation even under conditions of high temperature can be provided, and the tungsten wire can exhibit an excellent durability when used as component material for constituting cathode heaters and so forth, and the tungsten wire can be manufactured efficiently.
Abstract:
The present invention provides a cathode material for an electron beam device. The cathode material is characterized by the fact that it includes 0.5-9.0% by weight of a rare earth metal of the cerium group, 0.5-15.0% by weight of tungsten or rhenium or both tungsten and rhenium, 0.5-10% by weight of carbon and the remainder of iridium. The cathode material according to the invention has excellent plasticity, can be easily used for manufacturing an emitter of a small size, has high electron emission power, and has a low operation temperature, thereby having a long lifetime, and it is therefore useful for a cathode material for an electron beam device.
Abstract:
A metal cathode for an electron-emission device, and an indirectly heated cathode assembly employing the metal cathode where the metal cathode is formed of a quaternary alloy including 0.1-20% by weight barium (Ba), 0.1-20% by weight a metallic mobilizer facilitating Ba diffusion, a metal with a difference in atomic radius of at least 0.4 Angstrom from the atomic radius of platinum (Pt) or palladium (Pd), the metal being in the range of 0.01 to 30% by weight, and a balance of at least one of Pt and Pd. The metal cathode has a low operating temperature due to its reduced work function with improved current emission capability. The metal cathode can be used for a longer lifetime at high current density. Therefore, the metal cathode can be used effectively in electron-beam devices, such as a Braun tube or picture tube, satisfying larger size, longer life span, high definition, and high luminance requirements of the devices.
Abstract:
The present invention provides a cathode material for an electron beam device. The cathode material is characterized by the fact that it includes 0.5-9.0% by weight of a rare earth metal of the cerium group, 0.5-15.0% by weight of tungsten or rhenium or both tungsten and rhenium, 0.5-10% by weight of carbon and the remainder of iridium. The cathode material according to the invention has excellent plasticity, can be easily used for manufacturing an emitter of a small size, has high electron emission power, and has a low operation temperature, thereby having a long lifetime, and it is therefore useful for a cathode material for an electron beam device.
Abstract:
A copper electrode with a multi-layer coating wherein, for example, the outer layer is of tungsten and the inner layer is of iron, the outer layer functioning as a refractory material and the inner layer being a transitional layer having thermal physical properties between those of the electrode and those of the outer layer. Electrode with special coating to protect the same against heat.