Abstract:
The present invention provides a method for extracting a charged particle beam from a charged particle source. A set of electrodes is provided at the output of the source. The potentials applied to the electrodes produce a low-emittance growth beam with substantially zero electric field at the output of the electrodes.
Abstract:
An ion implantation system may comprise a plasma source for providing a plasma and a workpiece holder arranged to receive a bias with respect to the plasma to attract ions across a plasma sheath toward the substrate. The system may also include an extraction plate arrangement comprising a multiplicity of different apertures each arranged to provide an ion beam having ions distributed over a range of angles of incidence on the workpiece, wherein a first ion beam extracted from a first aperture has a first beam profile that differs from a second ion beam extracted from a second aperture.
Abstract:
Ion delivery manifolds with a gas transport channel, for receiving an ionized gas stream, and plural outlets that divide the gas stream into plural neutralization gas streams that are directed toward respective plural target regions are disclosed. At least generally equal ion distribution across the target regions is achieved by using different ion flow rates through the plural outlets. Methods of delivering plural neutralization streams to respective plural target regions include steps for receiving an ionized gas stream, for dividing the ionized gas stream into plural neutralization streams, and for directing the neutralization streams toward respective target regions. At least generally equal ion distribution across the target regions is achieved by differing the ion flow rates of the neutralization streams.
Abstract:
The present invention provides a method for extracting a charged particle beam from a charged particle source. A set of electrodes is provided at the output of the source. The potentials applied to the electrodes produce a low-emittance growth beam with substantially zero electric field at the output of the electrodes.
Abstract:
Thermal control is provided for an extraction electrode of an ion-beam producing system that prevents formation of deposits and unstable operation and enables use with ions produced from condensable vapors and with ion sources capable of cold and hot operation. Electrical heating of the extraction electrode is employed for extracting decaborane or octadecaborane ions. Active cooling during use with a hot ion source prevents electrode destruction, permitting the extraction electrode to be of heat-conductive and fluorine-resistant aluminum composition. The service lifetime of the system is enhanced by provisions for in-situ etch cleaning of the ion source and extraction electrode, using reactive halogen gases, and by having features that extend the service duration between cleanings, including accurate vapor flow control and accurate focusing of the ion beam optics. A remote plasma source delivers F or Cl ions to the de-energized ion source for the purpose of cleaning deposits in the ion source and the extraction electrode. These techniques enable long equipment uptime when running condensable feed gases such as sublimated vapors, and are particularly applicable for use with so-called cold ion sources and universal ion sources. Methods and apparatus are described which enable long equipment uptime when decaborane and octadecaborane are used as feed materials, as well as when vaporized elemental arsenic and phosphorus are used, and which serve to enhance beam stability during ion implantation.
Abstract:
Apparatus for the production of a charged particle beam, comprising: an ion source plasma chamber (104), having a door (106), and an accelerator (102) mounted on the face of the door remote from the ion source plasma chamber.
Abstract:
Thermal control is provided for an extraction electrode of an ion-beam producing system that prevents formation of deposits and unstable operation and enables use with ions produced from condensable vapors and with ion sources capable of cold and hot operation. Electrical heating of the extraction electrode is employed for extracting decaborane or octadecaborane ions. Active cooling during use with a hot ion source prevents electrode destruction, permitting the extraction electrode to be of heat-conductive and fluorine-resistant aluminum composition. The service lifetime of the system is enhanced by provisions for in-situ etch cleaning of the ion source and extraction electrode, using reactive halogen gases, and by having features that extend the service duration between cleanings, including accurate vapor flow control and accurate focusing of the ion beam optics. A remote plasma source delivers F or Cl ions to the de-energized ion source for the purpose of cleaning deposits in the ion source and the extraction electrode. These techniques enable long equipment uptime when running condensable feed gases such as sublimated vapors, and are particularly applicable for use with so-called cold ion sources and universal ion sources. Methods and apparatus are described which enable long equipment uptime when decaborane and octadecaborane are used as feed materials, as well as when vaporized elemental arsenic and phosphorus are used, and which serve to enhance beam stability during ion implantation.
Abstract:
The present invention provides a method for extracting a charged particle beam from a charged particle source. A set of electrodes is provided at the output of the source. The potentials applied to the electrodes produce a low-emittance growth beam with substantially zero electric field at the output of the electrodes.
Abstract:
An apparatus and/or method for controlling an ion beam may be provided, and/or a method for preparing an extraction electrode for the same may be provided. In the apparatus, a plurality of extraction electrodes may be disposed in a path of an ion beam. At least one extraction electrode may include a plurality of sub-grids.
Abstract:
An ion source section of ion implantation equipment for ionizing reaction gas in an ion implantation process of semiconductor manufacturing processes is disclosed. The ion source section includes a source aperture member separable from an arc chamber and having an ion-discharging hole through which the ion beam discharges. The source aperture member consists of a first plate, a second plate adjacent to the first plate and facing the arc chamber, and a third plate to protect the exposed second plate from the ionized reaction gas.