Abstract:
An X-ray tube is provided. The X-ray tube includes a first housing including an X-ray window formed therein, a second housing being rotatable about a rotational shaft installed within the first housing, an anode installed on the rotational shaft within the second housing and positioned in one side of the rotational shaft in an extending direction of the rotational shaft, an emitter installed on the rotational shaft within the second housing, positioned in the other side of the rotational shaft in the extending direction of the rotational shaft, and emitting electron beams, a lens unit installed between the anode and the emitter and focusing the electron beams emitted from the emitter to the anode, and an electron beam deflection unit installed on the rotational shaft to deflect an angle of electron beams moving toward the anode from the lens unit.
Abstract:
A rotatable anode for an X-ray tube comprises a first unit (901) for being hit by a first electron beam, and at least a second unit (902) being hit by at least a second electron beam, the second unit being electrically isolated from the first. In addition, an X-ray system comprises the anode, a main cathode for generating an electron beam, and first electrical potential, and an auxiliary cathode for influencing a second electrical potential. The main cathode deflects the electron beam to heat the auxiliary cathode. Furthermore, a device determines electrical potential by detecting a point of impact of the electron beam onto the anode and/or by detecting an X-ray spectrum of radiation starting from the anode. The electron beam hits the first unit and is deflected, wherein the deflected beam hits the second unit the point of impact. The first unit and/or second unit emit radiation.
Abstract:
A system for generating image data includes a voltage supply configured for applying a first voltage to generate radiation at a first energy level, and for applying a second voltage to generate radiation at a second energy level, an imager for generating a first set of image data based at least in part on the radiation at the first energy level, and for generating a second set of image data based at least in part on the radiation at the second energy level, and a processor for creating composite image data using the first and the second sets of image data.
Abstract:
A field emission cathode has a field emitter and an extraction grid, and the field emitter and the extraction grid can be moved relative to one another. Such a field emission cathode is highly durable and exhibits a longer lifespan. An x-ray tube has a field emission cathode composed of a field emitter and an extraction grid that can be moved relative to one another. Such an x-ray tube is highly durable and exhibits a longer lifespan.
Abstract:
An x-ray tube includes a stationary base and a passage therein. The x-ray tube includes an anode frame having an anode positioned adjacent to a first end and having a neck at a second end, the neck extends into the passage, wherein the anode frame is configured to rotate about a longitudinal axis of the passage. A hermetic seal is positioned about the neck between the neck and the stationary base.
Abstract:
An X-ray imaging apparatus is disclosed. The apparatus includes a radiator housing, an X-ray tube, a source of X-rays and at least one filtration material disposed on the X-ray tube. The X-ray tube is rotatable about a longitudinal axis and is disposed at least partially within the radiator housing. The source of X-rays emits at least one X-ray beam at least partially through the X-ray tube. The X-ray beam exits the X-ray tube at an annular X-ray window. The filtration material at least partially covers a portion of the annular X-ray window. Rotation of the X-ray tube causes the X-ray beam to pass through a plurality of locations in the annular X-ray window and at least a portion of the X-ray beam is filtered by the filtration material.
Abstract:
A rotating envelope tube has a housing which with an x-ray exit window that is essentially transparent for x-ray radiation. To improve the mechanical stability, the x-ray exit window internally exhibits a structure through which cooling fluid can flow.
Abstract:
An X-ray imaging apparatus is disclosed. The apparatus includes a radiator housing, an X-ray tube, a source of X-rays and at least one filtration material disposed on the X-ray tube. The X-ray tube is rotatable about a longitudinal axis and is disposed at least partially within the radiator housing. The source of X-rays emits at least one X-ray beam at least partially through the X-ray tube. The X-ray beam exits the X-ray tube at an annular X-ray window. The filtration material at least partially covers a portion of the annular X-ray window. Rotation of the X-ray tube causes the X-ray beam to pass through a plurality of locations in the annular X-ray window and at least a portion of the X-ray beam is filtered by the filtration material.
Abstract:
To reduce the rotational power, an apparatus with a rotational body that is rotationally driven in a fluid-filled housing a rotational directing body is provided between the rotational body and the housing, which is rotatably supported coaxially with respect to the rotational body. The rotational directing body is configured such that in operation it rotates at an intermediate rotational frequency in comparison to the housing and the rotational body. The apparatus is particularly an X-ray radiator having a cathode and anode that are mounted in a vacuum tube in a spatially fixed manner in relation to the tube, the vacuum tube being rotationally driven as a rotational body in a coolant housing.
Abstract:
A rotary piston tube for an x-ray radiator is provided in which the vacuum housing, accommodating an anode and a cathode and displaceable in rotation, comprises a 360null all-around ray exit window. For optimization of the ray exit window, this is produced according to one of the subsequently stated material specifications: a) a high-temperature steel or a high-temperature chromium and/or nickel alloy, listed in the standard EN 10273 and EN 10302, at a wall thickness between 0.1 to 0.4 mm; b) a titanium material at a wall thickness between 0.2 and 2 mm; and c) a ceramic material at a wall thickness between 1 mm and 5 mm.