Abstract:
A substrate for mounting a semiconductor device includes an insulating layer having first and second opposed surfaces defining a thickness. First and second electrically conductive lands are included in the insulating layer. The first electrically conductive lands extend through the whole thickness of the insulating layer and are exposed on both the first and second opposed surfaces. The second electrically conductive lands have a thickness less than the thickness of the insulating layer and are exposed only at the first surface. Electrically conductive lines at the first surface of the insulating layer couple certain ones of the first electrically conductive lands with certain ones of the second electrically conductive lands. The semiconductor device is mounted to the first surface of the insulating layer. Wire bonding may be used to electrically coupling the semiconductor device to certain ones of the first and second lands.
Abstract:
Mechanical measures strengthen a flexible circuit board or deformable electronic by manipulating the location and/or intensity of the stress concentration or to limit bending, torsion, and stretching. A material layer is patterned onto the flexible circuit board with a specific pattern and place of deposition in order to modify the stress concentration and profile of the circuit board and increase its overall strength. The material layer may be configured to modify the stress concentrations during bending away from the weak points in the assembly or to spread the stress during bending by increasing the radius of the bend curvature and therefore decreasing the chance of mechanical failure.
Abstract:
To provide an anisotropic conductive film which can respond to increasing pitch reduction of connection targets while maintaining connection reliability, and can be manufactured at a lower cost than conventional, and to provide a method of manufacturing the same. The anisotropic conductive film is provided with a porous film consisting of polymer, having numerous holes penetrating in a film thickness direction, the holes being in a honeycomb arrangement and having inner wall surfaces which curve outwards, a conductive material that fills the holes in the porous film, and an adhesive layer coated on both surfaces of the porous film. The porous film is formed by leaving a supporting substrate on which cast is a polymer solution where a polymer is dissolved in a hydrophobic, volatile organic solvent, under high humidity conditions.
Abstract:
The invention provides a method of forming a monolayer of substantive particles including the steps of applying to a substrate a curable composition having substantive particles contained therein, the substantive particles having a particle size on at least one dimension thereof of at least 1 micrometer and being in two or more groups of different sizes; exposing the substantive particle-containing curable composition to a source of energy suitable for effecting polymerization of the curable composition for a sufficient time to effect polymerization of a layer of the curable composition having a thickness of no more than 50% of the height of the largest substantive particles; and optionally, removing uncured curable composition. The invention also provides a method of forming a monolayer of substantive particles in a non-random array where the curable composition comprises a ferrofluid composition. The latter method further comprises the step of subjecting the particle-containing curable ferrofluid composition to a magnetic field for a sufficient time to array the particles in a non-random manner in the composition prior to the exposure.
Abstract:
The present invention is directed to an apparatus and method for connecting integrated circuits placed on opposite sides of a circuit board through utilization of conduction elements embedded in the circuit board and extending from one surface of the board to the other. Conductive traces extend along the surface of the circuit board from the conduction elements to the integrated circuits. The conductive traces may be formed from multiple conductive layers.
Abstract:
The present invention is directed to an apparatus and method for connecting integrated circuits placed on opposite sides of a circuit board through utilization of conduction elements embedded in the circuit board and extending from one surface of the board to the other. Conductive traces extend along the surface of the circuit board from the conduction elements to the integrated circuits. The conductive traces may be formed from multiple conductive layers.
Abstract:
This self-supported, anisotropic conductive film has a partly annealed polymer layer (46) containing through holes, nail-shaped conductive elements (51) filling the through holes, having a central portion and ends, and the central portion of the nails is made from a hard material (52) and each end respectively of a first and a second meltable materials (44, 54).
Abstract:
This self-supported, anisotropic conductive film has a partly annealed polymer layer (46) containing through holes, nail-shaped conductive elements (51) filling said through holes, having a central portion and ends, and the central portion of the nails is made from a hard material (52) and each end respectively of a first and a second meltable materials (44, 54).
Abstract:
Provided is an electrical interconnect cell intermittently spaced across a substrate to form an interconnect device or structure. The interconnect device is fully customizable or programmable upon the upper surface to accommodate various electrical components and connectivity to those components. The electrical interconnect device includes a plurality of intermittently spaced first pairs of upper and lower signal lines interwoven with a plurality of intermittently spaced second pairs of upper and lower signal lines. A bonding pad is arranged between adjacent upper and lower signal line pairs and can be connected thereto with conductive links placed upon the surface layer. Each bonding pad includes one or more pad vias which extend perpendicular to the upper surface to conductive structures arranged in lower layers. Approximately one-half of the array of bonding pads are connected to potential conductors. The pairs of upper signal lines can not only be linked, but also can be cut to form a more direct routing between target locations. Moreover, the upper and lower signal lines are connected in order for traces to extend across the entire interconnect structure for ease of testability.
Abstract:
The present invention provides a method for providing an array of metal microbeads on a substrate, preferably in a regular pattern of very fine, uniform size microspheres or microbeads at precise spacing or scale previously unachievable. The method of the present invention comprises the steps of providing a metal layer on a substrate that is partitioned into metal regions; heating the metal layer to a temperature sufficient to melt the metal and to permit beading of the layer into discrete microbeads.