Abstract:
An electronic device includes a housing, a circuit board disposed within the housing, a first component and a second component disposed on one surface of the circuit board, a shielding mold disposed on the one surface of the circuit board to cover top and side surfaces of the first component, and an open structure disposed on the one surface of the circuit board to surround a side surface of the second component. In the open structure, a top portion is opened and exposes a part of the second component or the circuit board, an inner surface is spaced apart from the second component, and an outer surface contacts the shielding mold.
Abstract:
A printed circuit board comprises a substrate as well as resistors and electrical connections disposed on the substrate. The substrate couples to a video graphics array connector that has pins, including video pins and return pins. A video pin transmits a video signal, and a return pin provides a ground for a corresponding video pin. The substrate has openings, where each opening can receive a pin. The resistors and the electrical connections couple to a subset of the pins to mimic an external video graphics array monitor. The resistors comprise: a red connection resistor that can couple a red video pin with a red return pin; a green connection resistor that can couple a green video pin with a green return pin; and a blue connection resistor that can couple a blue video pin with a blue return pin.
Abstract:
To prevent decrease of the bonding strength of an electronic component and a multilayer substrate, an electronic component-embedded module may include an electronic component having a plurality of pads and a multilayer substrate which includes a plurality of resin layers and a cavity for containing the electronic component. The multilayer substrate may include a first resin layer having a plurality of first pattern conductors and a space, and a second resin layer having a second pattern conductor and a plurality of third pattern conductors. The plurality of third pattern conductors may be in conduction with either of the first pattern conductors or the pads, with the second resin layer being placed over the first resin layer. The second pattern conductor may be arranged around a first pad with a gap, and the second resin layer is present between the second pattern conductor and at least one of the first pads.
Abstract:
To prevent decrease of the bonding strength of an electronic component and a multilayer substrate, an electronic component-embedded module may include an electronic component having a plurality of pads and a multilayer substrate which includes a plurality of resin layers and a cavity for containing the electronic component. The multilayer substrate may include a first resin layer having a plurality of first pattern conductors and a space, and a second resin layer having a second pattern conductor and a plurality of third pattern conductors. The plurality of third pattern conductors may be in conduction with either of the first pattern conductors or the pads, with the second resin layer being placed over the first resin layer. The second pattern conductor may be arranged around a first pad with a gap, and the second resin layer is present between the second pattern conductor and at least one of the first pads.
Abstract:
A method for producing a portable data carrier includes a spatial structure printed on a first foil. Electroconductive lines are applied first, and components are subsequently inserted in the structure, wherein the structure corresponds to the dimensions or the shape and size of the inserted components. The components are electroconductively connected to the lines therein. A cover is printed over the components. A second foil can be applied to the cover, wherein a design print can be applied to both foils. A gap can be incorporated in the structure and the foils, in order to insert a chip module.
Abstract:
An apparatus having reduced phononic coupling between a graphene monolayer and a substrate is provided. The apparatus includes an aerogel substrate and a monolayer of graphene coupled to the aerogel substrate.
Abstract:
A circuit including a flexible substrate and at least one electric element attached to the substrate, the substrate including at least one cavity arranged near the electric element and helping to break or distort the electric element in response to a flexion or stretching of the substrate. Application in particular is to the manufacture of tear-proof electronic micromodules.
Abstract:
Systems and methods for a feeding structure for an antenna array are provided. In at least one embodiment, the feeding structure for an antenna array comprises one or more circuit boards with one or more circuits formed thereon, one or more conductive layers wherein the one or more circuit boards are mounted to the one or more conductive layers, and one or more connectors coupled to the one or more circuits through an opening in the one or more conductive layers. Furthermore, the one or more conductive layers are separated by a dielectric from the one or more circuits and the one or more conductive layers contact the one or more circuit boards such that the one or more circuits are isolated from the one or more conductive layers.
Abstract:
To prevent decrease of the bonding strength of an electronic component and a multilayer substrate, an electronic component-embedded module may include an electronic component having a plurality of pads and a multilayer substrate which includes a plurality of resin layers and a cavity for containing the electronic component. The multilayer substrate may include a first resin layer having a plurality of first pattern conductors and a space, and a second resin layer having a second pattern conductor and a plurality of third pattern conductors. The plurality of third pattern conductors may be in conduction with either of the first pattern conductors or the pads, with the second resin layer being placed over the first resin layer. The second pattern conductor may be arranged around a first pad with a gap, and the second resin layer is present between the second pattern conductor and at least one of the first pads.
Abstract:
An electronic part embedded substrate is disclosed. The electronic part embedded substrate includes a first substrate, a second substrate, an electronic part, an electrically connecting member, and a sealing member. A method of producing an electronic part embedded substrate is also disclosed. The method includes mounting an electronic part onto a first substrate, laminating a second substrate on the first substrate through an electrically connecting member; and filling a space between the first substrate and the second substrate with a sealing member to seal the electronic part.