Abstract:
A fixing member is spaced from a head actuator by a predetermined distance. A flexible printed circuit board extends at least from the head actuator to the fixing member. The flexible printed circuit board is superposed on the surface of the fixing member. A viscoelastic layer and a protecting layer are overlaid on the surface of the flexible printed circuit board. A clip clips all the fixing member, the flexible printed circuit board, the viscoelastic layer and the protecting layer together. When a head slider is positioned, the head actuator changes its attitude relative to a recording disk. The inertial force based on the rotation causes the first flexible printed circuit board to vibrate when the actuator block stops rotating. The viscoelastic layer serves to absorb this residual vibration of the first flexible printed circuit board. Vibration of the flexible printed circuit board can be suppressed.
Abstract:
A circuit board is connected to a connector including a connection port and contact portions located at upper and lower positions of the connection port. The contact portions face each other in the vertical direction, and each contact portion is connected electrically to the opposite contact portion. The circuit board includes a base substrate, a first wiring layer, and a second wiring layer. First terminals connected to the first wiring layer are provided on one principal surface of the base substrate, and second terminals connected to the second wiring layer are provided on the other principal surface. The first terminals and the second terminals come into contact with the contact portions and are arranged so as not to overlap each other in the vertical direction.
Abstract:
A fixing member is spaced from a head actuator by a predetermined distance. A flexible printed circuit board extends at least from the head actuator to the fixing member. The flexible printed circuit board is superposed on the surface of the fixing member. A viscoelastic layer and a protecting layer are overlaid on the surface of the flexible printed circuit board. A clip clips all the fixing member, the flexible printed circuit board, the viscoelastic layer and the protecting layer together. When a head slider is positioned, the head actuator changes its attitude relative to a recording disk. The inertial force based on the rotation causes the first flexible printed circuit board to vibrate when the actuator block stops rotating. The viscoelastic layer serves to absorb this residual vibration of the first flexible printed circuit board. Vibration of the flexible printed circuit board can be suppressed.
Abstract:
In an embodiment of an optically coupled semiconductor device of the present invention, the optically coupled semiconductor device is provided with a resin sealing portion and lead drawing portions. The resin sealing portion integrally seals a power control semiconductor element chip, an firing light-receiving element chip for firing the power control semiconductor element chip, and a light-emitting element chip optically coupled with the firing light-receiving element, for converting an electric signal into an optical signal. The lead drawing portions are connected to the power control semiconductor element chip, the firing light-receiving element, and the light-emitting element chip, and are drawn out of the resin sealing portion. The optically coupled semiconductor device is further provided with a U-shaped radiator having extended portions that extend in an extending direction intersecting a drawing direction of the lead drawing portions and that are operable to hold the resin sealing portion therebetween.
Abstract:
A fixing member is spaced from a head actuator by a predetermined distance. A flexible printed circuit board extends at least from the head actuator to the fixing member. The flexible printed circuit board is superposed on the surface of the fixing member. A viscoelastic layer and a protecting layer are over laid on the surface of the flexible printed circuit board. A clip clips all the fixing member, the flexible printed circuit board, the viscoelastic layer and the protecting layer together. When a head slider is positioned, the head actuator changes its attitude relative to a recording disk. The inertial force based on the rotation causes the first flexible printed circuit board to vibrate when the actuator block stops rotating. The viscoelastic layer serves to absorb this residual vibration of the first flexible printed circuit board. Vibration of the flexible printed circuit board can be suppressed.
Abstract:
A shielding apparatus for an electric device comprises a first lead, a second lead and an inverted U-shaped cover, constituting a metallic inserting component. The first and second leads insert into two sides of the electric device, respectively, and electrically connect with a ground terminal of a circuit board. The inverted U-shaped cover contacts with the top of a metallic shell of the electric device and clips on the two sides of the metallic shell. Functionally, the metallic inserting component can reduce noises from electromagnetic interference, and tightly fix on the metallic shell without electrical welding so that the reliability of assembly will be improved.
Abstract:
A wrap-around cooling arrangement for a printed circuit board is disclosed. Such an arrangement comprises: a printed circuit board (“PCB”) having a first side and a second side opposite to said first side; a heat sink arranged on said first side of said PCB; a first to-be-cooled component coupled to said second side of said PCB; and a thermal jumper to thermally couple said first component on said second side to said heat sink on said first side, said jumper being configured to extend physically around a side edge of said PCB.
Abstract:
A plurality of converter circuits is connected in parallel while reducing conduction loss. A converter circuit is formed on each of a plurality of circuit boards, and a plurality of types of terminal connection patterns containing power input terminal connection patterns and power output terminal connection patterns are formed on the end portions of each of the circuit boards with the disposition positions substantially matching each other. The terminal connection patterns at the same position of each circuit board are sandwiched by each of clips of a common terminal member, each of the circuit boards is laminated and fixed, and the converter circuits of each of the circuit boards are connected in parallel. The conduction path for electrically connecting the converter circuit of each circuit board becomes short, making it possible to reduce conduction loss. Also, it is possible to mount a plurality of converter circuits without increasing the occupied area of a motherboard to be mated therewith in comparison with a case in which the circuit boards are provided side-by-side.
Abstract:
A semiconductor device is made by mounting semiconductor elements on both sides of a wiring board having three-dimensional wiring including inner-via holes. A high operating speed and smaller size are made possible by employing a laminated structure of semiconductor elements without using the chip-on-chip configuration. Semiconductor elements are mounted on both sides of a wiring board having three-dimensional wiring including inner via holes so that the semiconductor elements oppose each other via the wiring board. The electrodes of the semiconductor elements are connected with each other by the three-dimensional wiring of the wiring board.
Abstract:
A plurality of module substrates have circuit boards, respectively. The circuit boards are stacked with a space therebetween, and are connected to first end portions of connecting members. The second end portions of the connecting members are connected to connecting pads disposed on a motherboard. The module substrates are thus stacked and mounted on the motherboard so as to increase the mounting density. By causing the connecting members for the upper circuit board to project further than the connecting members for the lower circuit board, the connecting members for the upper and lower circuit boards are prevented from touching each other.