Abstract:
A method of making cerium dioxide nanoparticles includes: a) providing an aqueous reaction mixture having a source of cerous ion, a source of hydroxide ion, a nanoparticle stabilizer, and an oxidant at an initial temperature no higher than about 20° C.; b) mechanically shearing the mixture and causing it to pass through a perforated screen, thereby forming a suspension of cerium hydroxide nanoparticles; and c) raising the initial temperature to achieve oxidation of cerous ion to eerie ion and thereby form cerium dioxide nanoparticles having a mean diameter in the range of about 1 nm to about 15 nm. The cerium dioxide nanoparticles may be formed in a continuous process.
Abstract:
A composition contains an additive for assisting with regeneration of the PF in the form of an organic dispersion of iron particles in crystallized form and a detergent including a quaternary ammonium salt.
Abstract:
This disclosure relates to sulfurized derivatives made from functionalized monomers. The disclosure relates to lubricants, functional fluids, fuels, dispersants, detergents and functional compositions (e.g., cleaning solutions, food compositions, etc.)
Abstract:
Methods for improving the injector performance, unsticking fuel injectors, and reducing an amount of alkali metal carboxylate deposits on internal components of fuel injectors. The method includes operating the diesel engine on a fuel composition comprising a major amount of diesel fuel and from about 45 to about 550 ppm by weight based on a total weight of fuel composition of a fuel additive consisting essentially of a compound of the formula wherein R is an alkyl or alkenyl group containing from 20 to 170 carbon atoms. The additive has a total acid number (TAN) ranging from about 50 to about 290 mg KOH/g. Fuel injectors of the fuel injected diesel engine have an average injector hole diameter of less than 160 μm and an average smallest clearance between injector needle and injector barrel/casing of less than about 10 μm.
Abstract:
The present invention relates to methods of fueling an internal combustion engine, and composition, that provide improved nitrogen-free detergency in the engine, particularly in the area of injector deposit control. The present invention also provides methods of providing both improved detergency and improved corrosion inhibition, while avoiding compatibility problems with fuels and/or while limiting the amount of nitrogen delivered to the fuel from the deposit control additive.
Abstract:
A method of inhibiting the formation of foam in a mixture comprising water and hydrocarbons, the method comprising contacting the mixture with a composition which comprises at least one ionic liquid. The ionic liquid is preferably a poly(hydroxycarboxylic acid) amide salt derivative or an alkyl ethoxylate phosphate salt.
Abstract:
A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion and a source of one or more metal ions (M) other than cerium, a source of hydroxide ion, at least one monoether carboxylic acid nanoparticle stabilizer wherein the molar ratio of said monoether carboxylic acid nanoparticle stabilizers to total metal ions is greater than 0.2, and an oxidant. The cerous ion is oxidized to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles containing one or more metal ions (M), Ce1-xMxO2-δ, wherein x has a value from about 0.001 to about 0.95 and δ has a value of about 0.0 to about 0.5.
Abstract:
A liquid fuel composition includes alcohols of four carbon atoms and additives, the liquid fuel composition being for ignition by compression. Various examples pertain to a liquid fuel composition with alcohols of four carbon atoms and additives, with ignition by compression to a diesel cycle fuel engine where the fuel can be able to be produced by means of biotechnology from renewable biologic source, including processes of fermentation of sugars or materials available on sugar and ethanol plants. As an example, a produced fuel can be used conventionally as replacement of diesel in urban transportation vehicles or roads and can be an alternative to diesel fuel. The composition can be employed alone or mixed to fossil diesel oil (e.g., in the engine, etc.).
Abstract:
The present invention is directed toward compositions suitable for use as dielectric fluids, lubricant fluids and biodiesel fluids. Compositions described herein are obtained from a saturated, unsaturated or combinations of both monol, diol, triol or polyol acyl ester based fluid and/or a non-ester based fluid and 2,4,6-tris(di-C1-C6-alkylaminomethyl) phenol and/or the carboxylic acid salt of 2,4,6-tris(di-C1-C6-alkylaminomethyl) phenol. These compositions demonstrate improved oxidative stability and/or hydrolytic stability at higher use temperatures.
Abstract:
The present invention relates to methods of improving the low temperature storage and performance properties of fatty acids and/or derivatives thereof, as well as compositions containing fatty acids and/or derivatives thereof having superior lower temperature storage and performance properties.