Abstract:
Embodiments of the present disclosure generally provide various apparatus and methods for reducing particles in a semiconductor processing chamber. One embodiment of present disclosure provides a vacuum screen assembly disposed over a vacuum port to prevent particles generated by the vacuum pump from entering substrate processing regions. Another embodiment of the present disclosure provides a perforated chamber liner around a processing region of the substrate. Another embodiment of the present disclosure provides a gas distributing chamber liner for distributing a cleaning gas around the substrate support under the substrate supporting surface.
Abstract:
Embodiments of the present disclosure generally relate to semiconductor processing equipment, and more specifically to apparatus, e.g., magnet holding structures, that can be used with magnets during plasma processing of a substrate. In an embodiment, a magnet holding structure for a plasma-enhanced chemical vapor deposition chamber is provided. The magnet holding structure includes a top piece having a plurality of magnet retention members and a bottom piece having a plurality of magnet retention members. The top piece has a first inside edge and a first outside edge, and the bottom piece has a second inside edge and a second outside edge. The magnet holding structure further includes a plurality of casings. Each casing of the plurality of casings is configured to at least partially encapsulate a magnet, and each casing positioned between a magnet retention member of the top piece and a magnet retention member of the bottom piece.
Abstract:
Embodiments disclosed herein include a method for cleaning a bevel area of a substrate support disposed within a plasma processing chamber. In one example the method begins by placing a cover substrate on a substrate support disposed in an interior volume of a processing chamber. A cleaning gas is provided into the interior volume of the processing chamber. A plasma is struck in the interior volume of the processing chamber. A cleaning gas is provided through the substrate support to a bevel edge area defined between an outer diameter of the cover substrate and an edge ring disposed on the substrate support.
Abstract:
Examples of the present invention include a method for removing halogen-containing residues from a substrate. The method includes transferring a substrate to a substrate processing system through a first chamber volume of a load lock chamber. The load lock chamber is coupled to a transfer chamber of the substrate processing system. The substrate is etched in one or more processing chambers coupled to the transfer chamber of the substrate processing system with chemistry from a showerhead disposed over a heated substrate support assembly. The chemistry includes halogen. Halogen-containing residues are removed from the etched substrate in a second chamber volume of the load lock chamber. Cooling the etched substrate in a cooled substrate support assembly of the load lock chamber after removing the halogen-containing residue.
Abstract:
Methods and systems for in-situ temperature control are provided. The method includes delivering a temperature-sensing disc into a processing region of a processing chamber without breaking vacuum. The temperature-sensing disc includes one or more cameras configured to perform IR-based imaging. The method further includes measuring a temperature of at least one region of at least one chamber surface in the processing region of the processing chamber by imaging the at least one surface using the temperature-sensing disc. The method further includes comparing the measured temperature to a desired temperature to determine a temperature difference. The method further includes adjusting a temperature of the at least one chamber surface to compensate for the temperature difference.
Abstract:
Examples of the present disclosure provide a load that includes a chamber body assembly. The chamber body assembly defines a first chamber volume and a second chamber volume fluidly isolated from one another. The first chamber volume and second chamber volume are selectively connectable to two environments through two sets of openings configured for substrate transferring. A third chamber volume is selectively connectable to the two environments through two sets of openings. A remote plasma source couples a processing gas source to the second chamber volume. A cooled substrate support assembly, includes a plurality of cooling channels, bounds a portion of the first chamber volume. A heated substrate support assembly can support a substrate. A gas distribution assembly, includes a showerhead, is disposed in the second chamber volume and is coupled to the remote plasma source. The showerhead can provide a processing gas to the second chamber volume.
Abstract:
Embodiments of the present disclosure generally provide various apparatus and methods for reducing particles in a semiconductor processing chamber. One embodiment of present disclosure provides a vacuum screen assembly disposed over a vacuum port to prevent particles generated by the vacuum pump from entering substrate processing regions. Another embodiment of the present disclosure provides a perforated chamber liner around a processing region of the substrate. Another embodiment of the present disclosure provides a gas distributing chamber liner for distributing a cleaning gas around the substrate support under the substrate supporting surface.
Abstract:
Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
Abstract:
Methods and apparatus for processing a substrate are provided herein. In some embodiments, an apparatus for processing a substrate includes a process chamber having an internal processing volume disposed beneath a dielectric lid of the process chamber; a substrate support disposed in the process chamber and having a support surface to support a substrate; an inductive coil disposed above the dielectric lid to inductively couple RF energy into the internal processing volume to form a plasma above the substrate support; and a first inductive applicator ring coupled to a lift mechanism to position the first inductive applicator ring within the internal processing volume.
Abstract:
Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.