Abstract:
A plasma generator generates atmospheric pressure, low temperature plasma (cold plasma), and includes a thin plate-like first electrode defining a planar bottom surface. A thin plate-like second electrode defines a planar top surface. The second electrode opposes the first electrode, such that the bottom surface of the first electrode faces the top surface of the second electrode. A first dielectric layer is disposed on the bottom surface of the first electrode, and a second dielectric layer is disposed on the top surface of the second electrode. A spacer supports the first and second electrodes to define a predetermined gap between the first and second dielectric layers. A power supply supplies electrical power to the first and second electrodes at a predetermined voltage and frequency, such that, based on the predetermined gap between the first and second dielectric layers, cold plasma is generated.
Abstract:
A film forming apparatus includes: a chamber main body defining a chamber; a slit plate partitioning the chamber into a first space and a second space below the first space, the slit plate having a slit penetrating therethrough; a holder holding a target in the first space; a stage for supporting a substrate, the stage being movable in a moving direction perpendicular to a longitudinal direction of the slit in a moving area including an area directly below the slit; and a mechanism for moving the stage along the moving direction. In order to suppress scattering of particles from the target to another area other than the moving area in the second space through the slit, the stage has one or more protruding portions which provide upwardly and/or downwardly bent portions in a path around the stage between the slit and the another area in the second space.
Abstract:
Provided is a technique capable of suppressing a product substrate from being contaminated with a contaminant generated in a process chamber. The method includes (a) processing a substrate supported by a first substrate support by generating plasma in a first plasma generating region in a process chamber; and (b) removing a metal substance in the process chamber by generating plasma in the first plasma generating region and a second plasma generating region disposed between the first substrate support and a back surface of a substrate supported by a second substrate support.
Abstract:
In systems where insulating deposits form during normal operation, electrodes are configured with a preformed dielectric thereon, wherein the preformed dielectric is formed with a geometric feature that preforms a triple junction. These triple junctions enhance low level discharge activity to facilitate localized breakdown of the deposits and maintain electrode conductivity.
Abstract:
A dry etching method includes performing at least two etching steps, and further includes injecting protective gas into an etch chamber for processing between any two successive etching steps, wherein the protective gas generates plasma to neutralize electrons accumulated on a side wall of an etching trench. According to the present disclosure, hydrogen plasma is added in an etching process to remove the electrons accumulated on the side wall of the etching trench so as to reduce the microetching effect in multiple etching. In this way, process stability and reliability of a display substrate are improved.
Abstract:
An etching chamber is equipped with an actively-cooled element preferentially adsorbs volatile compounds that are evolved from a polymeric layer of a wafer during etching, which compounds will act as contaminants if re-deposited on the wafer, for example on exposed metal contact portions where they may interfere with subsequent deposition of metal contact layers. In desirable embodiments, a getter sublimation pump is also provided in the etching chamber as a source of getter material. Methods of etching in such a chamber are also disclosed.
Abstract:
A method of performing a surface treatment includes passivating a surface of an insulating part in a reaction chamber, and then performing a hydrogen plasma annealing treatment on a substrate in the reaction chamber. The passivation of the surface of the insulating part includes supplying a nitrogen-based gas into the reaction chamber and exciting the nitrogen-based gas in the reaction chamber using a plasma generator.
Abstract:
In systems where insulating deposits form during normal operation, electrodes are configured with a preformed dielectric thereon, wherein the preformed dielectric is formed with a geometric feature that performing a triple junction. These triple junctions enhance low level discharge activity to facilitate localized breakdown of the deposits and maintain electrode conductivity.
Abstract:
A method for cleaning a plasma processing chamber is provided. The method includes introducing an organic gas into a plasma processing chamber. The organic gas includes an organic compound including carbon and hydrogen. The method includes generating an organic plasma by exciting the organic gas. The organic plasma reacts with metal compound residues over an interior surface of the plasma processing chamber to volatilize the metal compound residues into a gaseous metal compound. The method includes removing the gaseous metal compound from the plasma processing chamber.
Abstract:
An apparatus for measuring contamination of a plasma generating includes: a chamber; a susceptor provided in the chamber and on which a substrate is mounted; a plasma generator configured to generate plasma in the chamber; an inner jacket provided in the chamber and surrounding a space where the plasma is generated; a V-I probe electrically connected to the inner jacket and configured to detect a phase difference between a voltage and a current; a power supply unit configured to supply the voltage to the inner jacket through a blocking capacitor; and a monitor connected to the V-I probe and configured to store and display measurement data. A thickness of a contamination layer on a surface of the inner jacket is determined by analyzing a signal obtained by supplying the voltage to the inner jacket.