Abstract:
A layer structure for the electrical contacting of a semiconductor component having integrated circuit elements and integrated connecting lines for the circuit elements, which is suitable in particular for use in a chemically aggressive environment and at high temperatures, i.e., in so-called “harsh environments,” and is simple to implement. This layer structure includes at least one noble metal layer, in which at least one bonding island is formed, the noble metal layer being electrically insulated from the substrate of the semiconductor component by at least one dielectric layer, and having at least one ohmic contact between the noble metal layer and an integrated connecting line. The noble metal layer is applied directly on the ohmic contact layer.
Abstract:
A sensor includes at least one micro-patterned diode pixel that has a diode implemented in, on, or under a diaphragm, and the diaphragm in turn being implemented above a cavity. The diode is contacted via supply leads that are implemented at least in part in, on, or under the diaphragm, and the diode is implemented in a polycrystalline semiconductor layer. The diode is implemented by way of two low-doped diode regions or at least one low-doped diode region. At least parts of the supply leads are implemented by way of highly doped supply lead regions of the shared polycrystalline semiconductor layer.
Abstract:
Measures are provided for improving the acoustic properties of a component (10) having a micromechanical microphone structure realized in a layer construction (20) over a substrate (1), and for simplifying the production method. The microphone structure of such a component (10) includes a diaphragm (11) deflectable by acoustic pressure, spanning a cavity (13) that acts as a rear-side volume in the rear side of the component, and includes a stationary, acoustically permeable counter-element (12) situated over the diaphragm (11). According to the invention, the layer construction (20) has, between the diaphragm (11) and the substrate (1), an enclosing layer (3) in which there is fashioned an acoustically transparent aperture (4). The diaphragm (11) is connected to the rear-side volume (13) via this aperture in the enclosing layer (3). Under the enclosing layer (3), the rear-side volume (13) extends laterally beyond this aperture (4).
Abstract:
A micromechanical system is described having a substrate; a first micromechanical functional area, which is situated above the substrate; a second micromechanical functional area, which is situated above the first micromechanical functional area and is connected via a first weblike anchoring structure to the first micromechanical functional area; a third micromechanical functional area, which is situated above the second micromechanical functional area, and which has a first subarea and a second subarea; the first subarea being connected via a second weblike anchoring structure to the second micromechanical functional area; and the second subarea being mounted floating over the substrate by the first subarea. The invention also provides a method for manufacturing such a micromechanical system.
Abstract:
A method is described for producing an electrical feedthrough in a substrate, and a substrate having an electrical feedthrough. The method has the following operations of forming the electrical feedthrough so that it extends through the substrate from the front side to the back side of the substrate, forming a first closing layer on a front side of the substrate, forming an annular isolation trench in the substrate which encloses the electrical feedthrough, using an etching process starting from the back side of the substrate, the etching process terminating at the first closing layer, and closing off the annular isolation trench in the substrate by forming a second closing layer on the back side of the substrate.
Abstract:
A method for manufacturing a component having an electrical through-connection includes: providing a semiconductor substrate having a front side and a back side opposite from the front side; producing, on the front side of the semiconductor substrate, an insulating trench which annularly surrounds a contact area; introducing an insulating material into the insulating trench; producing a contact hole on the front side of the semiconductor substrate by removing the semiconductor material surrounded by the insulating trench in the contact area; and depositing a metallic material in the contact hole.
Abstract:
In a micromechanical system having a substrate and an electrode situated over the substrate, the electrode is connected to the substrate via a vertical spring. The vertical spring is sectionally provided in a first conductive layer and sectionally provided in a second conductive layer, the second conductive layer being situated over the first conductive layer and the first conductive layer being situated over the substrate. The electrode is provided in a third conductive layer, which is situated over the second conductive layer.
Abstract:
A method for producing an electrical feedthrough in a substrate includes: forming a first printed conductor on a first side of a substrate which electrically connects a first contact area of the substrate on the first side; forming a second printed conductor on a second side of a substrate which electrically connects a second contact area of the substrate on the second side; forming an annular trench in the substrate, a substrate punch being formed which extends from the first contact area to the second contact area; and selectively depositing an electrically conductive layer on an inner surface of the annular trench, the substrate punch being coated with an electrically conductive layer and remaining electrically insulated from the surrounding substrate due to the annular trench.
Abstract:
A micromechanical component is described including a substrate having a spacer layer and a test structure for ascertaining the thickness of the spacer layer. The test structure includes a seismic mass, which is elastically deflectable along a measuring axis parallel to the substrate, a first electrode system and a second electrode system for deflecting the seismic mass along the measuring axis, having a mass electrode, which is produced by a part of the seismic mass, and a substrate electrode, which is situated on the substrate in each case, the first electrode system being designed to be thicker than the second electrode system by the layer thickness of the spacer layer.
Abstract:
In a method for manufacturing a micromechanical component, a cavity is produced in the substrate from an opening at the rear of a monocrystalline semiconductor substrate. The etching process used for this purpose and the monocrystalline semiconductor substrate used are controlled in such a way that a largely rectangular cavity is formed.