Abstract:
A plasma chamber (11′) for coating a substrate with a polymer layer, the plasma chamber comprises a first electrode set (14′) and a second electrode set (14′), the first and second electrode sets are arranged either side of a sample chamber for receiving a substrate, wherein the first and second electrode sets comprise plural electrode layers (141′, 142′) and wherein each electrode set comprises plural radiofrequency electrode layers or plural ground electrode layers for coating polymer to each surface of a substrate.
Abstract:
A method of coating a substrate surface. The method includes plasma spraying a direct-spray component onto a substrate surface, and plasma spraying an over-spray component onto the substrate surface. The direct-spray and over-spray components form a plasma coating surface contacting at least a portion of the substrate surface.
Abstract:
A method for producing a porous polymer structure involves (i) forming a polymer; (ii) subsequently contacting the polymer with a nonsolvent and inducing the formation of an emulsion in which the nonsolvent is present as the dispersed phase and the polymer as the continuous phase; and (iii) removing at least some of the nonsolvent so as to leave pores within the polymer, wherein the polymer is formed by exciting one or more molecules in an exciting medium, in particular by pulsed plasma deposition. Emulsion formation in step (ii) may be induced by or in the presence of an emulsion stabilising agent. Also provided is a porous polymer structure produced using the method, and a polymer which is impregnated with an emulsion stabilising agent, for use in the emulsion formation step of the method.
Abstract:
To provide an antifouling film-coated substrate, which has a fluorinated organic silicon compound coating film and which is excellent in the antifouling properties as it has water repellency, oil repellency, etc. and also excellent in the abrasion resistance so that deterioration in the antifouling properties is prevented against repeated wiping operations. The antifouling film-coated substrate 3 comprises a transparent substrate 1 having a film-forming surface 1a exposed to at least a moisture-containing atmosphere, and a fluorinated organic silicon compound coating film 2 formed on the film-forming surface 1a of the transparent substrate 1 by a dry-mode method.
Abstract:
A method for creating a superhydrophobic coated nanoporous assembly includes the steps of: providing a nanoporous assembly formed of discrete and/or continuous structures that provide a morphology defining pores of less than 1 micron between neighboring discrete and continuous structures; bringing gaseous plasma precursors in the presence of the nanoporous assembly and in the presence of a plasma generator; employing the plasma generator to convert the gaseous plasma precursors to the plasma state; and permitting the plasma precursors to deposit as a coating on the nanoporous assembly through plasma polymerization techniques the deposition thereof preserving the porous structure of the nanoporous assembly, the deposited coating exhibiting a surface energy of less than 30 dynes/cm.
Abstract:
A gas barrier laminate comprising a substrate having thereon at least a gas barrier layer and a polymer layer, wherein at least one polymer layer is provided adjacent to at least one gas barrier layer; and an average carbon content of the polymer layer at a contact interface between the gas barrier layer is lower than an average carbon content in the polymer layer.
Abstract:
Apparatuses and methods are described that involve the deposition of polymer coatings on substrates. The polymer coatings generally comprise an electrically insulating layer and/or a hydrophobic layer. The hydrophobic layer can comprise fused polymer particles have an average primary particle diameter on the nanometer to micrometer scale. The polymer coatings are deposited on substrates using specifically adapted plasma enhanced chemical vapor deposition approaches. The substrates can include computing devices and fabrics.
Abstract:
The present invention is directed to a method of treating a reinforcement cord, comprising the steps of (A) atomizing a mixture of at least one hydrocarbon sulfide, a low viscosity organic solvent, and a carrier gas to form an atomized mixture; (B) generating an atmospheric pressure plasma from the atomized mixture; and (C) exposing the reinforcement cord to the atmospheric pressure plasma under conditions suitable to form a polymer strongly bonded to the reinforcement cord and capable of bonding to rubber.
Abstract:
A two piece ceramic showerhead includes upper and lower plates which deliver process gas to an inductively coupled plasma processing chamber. The upper plate overlies the lower plate and includes radially extending gas passages which extend inwardly from an outer periphery of the upper plate, axially extending gas passages in fluid communication with the radially extending gas passages and an annular recess forming a plenum between the upper and lower plates. The lower plate includes axially extending gas holes in fluid communication with the plenum. The two piece ceramic showerhead forms a dielectric window of the chamber through which radiofrequency energy generated by an antenna is coupled into the chamber. The gas delivery system is operable to supply an etching gas and a deposition gas into the processing chamber such that the etching gas in the plenum can be replaced with the deposition gas.
Abstract:
The present invention includes systems, methods and compositions for the encapsulation of particles. In one form, the system comprises one or more particles, a rotatable reaction chamber in a plasma enhanced chemical reactor to accept one or more particles, and at least one carbonaceous compound to be used in the rotatable reaction chamber, wherein the carbonaceous compound is polymerized onto a surface of one or more particles forming a polymer film encapsulating one or more particles. Using systems, methods, and compositions of the present invention, any particle encapsulated with a degradable or nondegradable polymer film may be introduced and/or released into an environment. The polymer film as well as introduction of encapsulated particles and release therefrom into an environment are controlled by the present invention.