Abstract:
Provided is a glass strand that, when mixed with mortar, is less likely to decrease the fluidity of the mortar and can effectively increase the mechanical strength of a cementitious material. A glass strand includes: a plurality of glass filaments containing 12% by mass or more ZrO2 and 10% by mass or more R2O (where R represents at least one selected from Li, Na, and K); and a coating covering surfaces of the glass filaments, wherein the coating contains polyvinyl acetate resin and polyether-based urethane resin, and wherein a content of the polyether-based urethane resin in the coating is, in solid content ratio, not less than 10% by mass and not more than 90% by mass.
Abstract:
A method for producing a blank of iron-doped silica glass with high silicic acid content for use as heat protection glass is provided. The method involves: (a) producing an iron-doped SiO2 soot body which contains iron in a first oxidation state Fe3+ by flame hydrolysis of a silicon-containing and an iron-containing starting substance, (b) drying the soot body to obtain a mean hydroxyl group content of less than 10 ppm by weight, and (c) vitrifying the soot body under a reducing atmosphere that is suitable for at least partially reducing the iron from the first oxidation state Fe3+ to a second, lower oxidation state Fe2+. A blank is obtained having an iron content between 0.1 and 1% by weight which exhibits an internal transmission of at most 40% in the infrared wavelength range and an internal transmission of at least 85% in the visible spectral range.
Abstract:
Ultralow expansion titania-silica glass. The glass has high hydroxyl content and optionally include one or more dopants. Representative optional dopants include boron, alkali elements, alkaline earth elements or metals such as Nb, Ta, Al, Mn, Sn Cu and Sn. The glass is prepared by a process that includes steam consolidation to increase the hydroxyl content. The high hydroxyl content or combination of dopant(s) and high hydroxyl content lowers the fictive temperature of the glass to provide a glass having a very low coefficient of thermal expansion (CTE), low fictive temperature (Tf), and low expansivity slope.
Abstract:
A method is provided that includes: forming a low-index trench region with a first density; forming an inner barrier layer comprising silica around the trench region at a second density greater than the first density; depositing silica-based soot around the first barrier layer to form an overclad region at a third density less than the second density; inserting a core cane into a trench-overclad structure; forming an outer barrier layer comprising silica in an outer portion of the overclad region at a fourth density greater than the third density; flowing a down dopant-containing gas through the trench-overclad structure to dope the trench region with the down dopant, and wherein the barrier layers mitigate diffusion of the down-dopant into the overclad region; and consolidating the trench-overclad and the core cane.
Abstract:
Provided is lithium disilicate crystalline glass containing cristobalite crystal phase for high strength and aesthetic traits and its manufacturing process thereof. Exemplary embodiments of the present invention provide the high strength and aesthetic lithium disilicate crystalline glass, one kind of dental restoration materials, and its manufacturing method which induces the growth of the different crystal phase, cristobalite, from glass with lithium disilicate crystal.
Abstract:
The invention relates to a multimode optical fiber having a refractive index profile, comprising a light-guiding core surrounded by one or more cladding layers. The present invention furthermore relates to an optical communication system comprising a transmitter, a receiver and a multimode optical fiber.
Abstract:
Methods for forming optical fiber preforms are disclosed. According to one embodiment, a method for forming an optical fiber preform includes forming a preform core portion from silica-based glass soot. The silica-based glass soot may include at least one dopant species for altering an index of refraction of the preform core portion. A selective diffusion layer of silica-based glass soot may be formed around the preform core portion to form a soot preform. The selective diffusion layer may have an as-formed density greater than the density of the preform core portion. A diffusing species may be diffused through the selective diffusion layer into the preform core portion. The soot preform may be sintered such that the selective diffusion layer has a barrier density which is greater than the as-formed density and the selective diffusion layer prevents diffusion of the at least one dopant species through the selective diffusion layer.
Abstract:
The invention relates to an optical fiber, in particular a laser fiber, containing a doped glass fiber core (1) and cladding (2) around the latter with a refraction index profile which decreases outwards from the fiber core. The optical fiber is distinguished by at least one intermediate layer (3, 4, 5) being disposed between the glass fiber core and the cladding to reduce the mechanical tension therebetween. In one advantageous embodiment, the intermediate layer is doped in such a way as to ensure a stepped mechanical tension distribution between the glass fiber core and the cladding, and is co-doped in such a way as to reduce the refractive index and counteract the refraction index-increasing effect of the intermediate layer doping. The invention further relates to an application of at least one doped barrier layer to a core region during preparation of the preform to avoid diffusion of special core dopants from the core during the collapse process, and to allow the diffusion of special dopants between the barrier layer and the core layer.
Abstract:
Provided is a doped quartz glass member for plasma etching, which is used in a plasma etching process and is free from any problematic fluoride accumulation during use. The quartz glass member for plasma etching is used as a jig for semiconductor production in a plasma etching process, and includes at least two or more kinds of metal elements in a total amount of 0.01 wt % or more to less than 0.1 wt %, in which the metal elements are formed of at least one kind of a first metal element selected from metal elements belonging to Group 3B of the periodic table and at least one kind of a second metal element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, lanthanoids, and actinoids.
Abstract:
A method for manufacturing a GRIN lens includes the steps of forming a wet gel provided with a concentration distribution having a different concentration of a refractive index distribution imparting metal that differs in concentration in a radial direction, drying the wet gel to form a dry gel having a bulk specific gravity ρ (g/cm3), sintering the dry gel to form a GRIN lens base material and stretching the GRIN lens base material while heating. The method is characterized in that, in the step of sintering the dry gel, partial pressures of oxygen during sintering at 800° C. or higher are 10−1 Pa or lower and also the relation between a rate of temperature increase v (° C./hr) and a bulk density ρ of the dry gel during sintering at 1,000 to 1,150° C. is defined by v≦105*EXP (−12ρ). As a result of this, the GRIN lens, which has a large numerical aperture and a small diameter, can stably and easily be manufactured.