Abstract:
An additive composition for liquid fuels is provided. The additive composition comprises water, one or more mineral salts, a polyol compound, an alcohol and a surfactant. The additive composition can be added to liquid fuels such as gasoline, diesel, kerosene and mazut to improve fuel efficiency and reduce emissions. The composition can be prepared from all natural materials.
Abstract:
Provided is a fuel reforming system that can convert gasoline into alcohol in a vehicle. Provided is a fuel reforming system (1) equipped with a reformer (15) having a reforming catalyst (152) that uses air to reform gasoline to produce alcohol, a mixer (14) which mixes gasoline and air and supplies the mixture to the reformer (15), and a condenser (16) which separates the gas produced in the reformer (15) into a gas phase and a condensed phase of which reformed fuel is the primary constituent; wherein the fuel reforming system (1) is characterized in that the reforming catalyst (152) is configured including a main catalyst for extracting hydrogen atoms from the hydrocarbons in the gasoline to produce alkyl radicals, and a catalytic promoter for reducing alkyl hydroperoxides produced from the alkyl radicals to produce alcohol.
Abstract:
Gasoline fuel and method of making and using it. The fuel comprises from 5 to 20 vol.-% paraffinic hydrocarbons originating from biological oils, fats, or derivatives or combinations thereof. Further, it comprises oxygenates, such as ethanol present in a concentration of about 5 to 15 vol.-%; or iso-butanol present in a concentration of 5 to 20 vol.-%, preferably about 10 to 17 vol.-%; or ETBE present in a concentration of 7 to 25 vol.-%, preferably about 15 to 22 vol.-%. The bioenergy content of the gasoline is at least 14 Energy equivalent percentage (Eeqv-%) calculated based on the heating values given in the European Renewable Energy Directive 2009/28/EC. By means of the invention, fuels with a high bioenergy content are provided which can be used in conventional gasoline-fuelled automotive engines.
Abstract:
The present disclosure generally relates to the production of fuels, gasoline additives, and/or lubricants, and precursors thereof. The compounds used to produce the fuels, gasoline additives, and/or lubricants, and precursors thereof may be derived from biomass. The fuels, gasoline additives, and/or lubricants, and precursors thereof may be produced by a combination of intermolecular and/or intramolecular aldol condensation reactions, Guerbet reactions, hydrogenation reactions, and/or oligomerization reactions.
Abstract:
A two-step process for the oligomerization and hydration of a mixed butenes feed is provided and is implemented in a two-stage system. The two-step process yields a product consisting of diisobutenes (DIBs) and mixed butanols. The DIBs are produced via the selective oligomerization of isobutene in a first stage and the mixed butanols are produced via the hydration, in a second stage, of mixed butenes that remain unreacted in the first stage.
Abstract:
A two-step process for the oligomerization and hydration of a mixed butenes feed is provided and is implemented in a two-stage system. The two-step process yields a product consisting of diisobutenes (DIBs) and mixed butanols. The DIBs are produced via the selective oligomerization of isobutene in a first stage and the mixed butanols are produced via the hydration, in a second stage, of mixed butenes that remain unreacted in the first stage.
Abstract:
A hydrocarbon fuel antioxidant comprises a compound having a following molecular structure R1-(CnHm)-R2, a precursor or a derivative of the compound: wherein n and m are positive integers; —(CnHm)— group is a straight chain molecule segment formed by covalent linkage of carbon atoms which are more than or equal to 3 and less than or equal to 50; ,R1 and R2 comprise an aromatic ring or carboxylic acid or hydroxyl radical or alkyl group; the aromatic ring group may either be a single ring or polycyclic, and may also be a heterocycle containing oxygen or nitrogen, which may be provided with or not provided with a substituent group; the antioxidant contains more than one linear chain or ring conjugated bond formed by conjugated double bonds; the ring conjugated double bonds are located on the aromatic ring at the end part; the linear chain conjugated double bonds are located on a carbon chain in the middle; and the antioxidant has a prominent absorption peak in a 250-400 nm ultraviolet wavelength range. The hydrocarbon fuel antioxidant comprises carotinoid, vitamin A or vitamin E. The invention further provides applications and a method of application of the antioxidant. The antioxidant can promote the ultraviolet light stabilization effect of the fuels, but also can promote the oxygen stabilization effect of the fuels, and particularly can promote the combustion efficiency of the fuels and reduce the emission of contaminants when the antioxidant is together used with such additives as cetane number improver and octane number improver.
Abstract translation:烃燃料抗氧化剂包含具有以下分子结构R1-(CnHm)-R2的化合物,化合物的前体或衍生物:其中n和m是正整数; - (C n H m) - 基团是通过大于或等于3并且小于或等于50的碳原子的共价连接形成的直链分子链段; ,R 1和R 2包含芳环或羧酸或羟基或烷基; 芳环基可以是单环或多环,并且也可以是含有氧或氮的杂环,其可以具有或不具有取代基; 抗氧化剂含有多于一个由共轭双键形成的直链或环共轭键; 环共轭双键位于端部的芳环上; 线性链共轭双键位于中间的碳链上; 并且抗氧化剂在250-400nm紫外线波长范围内具有显着的吸收峰。 烃类燃料抗氧化剂包括类胡萝卜素,维生素A或维生素E.本发明还提供了抗氧化剂的应用和应用的方法。 抗氧化剂可以促进燃料的紫外光稳定作用,而且可以促进燃料的氧稳定化作用,特别是可以提高燃料的燃烧效率,并且当抗氧化剂与这种添加剂一起使用时减少污染物的排放 作为十六烷值改进剂和辛烷值改进剂。
Abstract:
Embodiments of the present invention provide for production and recovery of ethanol or other volatile organic compounds, such as acetic acid, from solid biomass material. One embodiment comprises introducing a biomass material to a compartment of a solventless recovery system, wherein the biomass material contains one or more volatile organic compounds; contacting the biomass material with a superheated vapor stream in the compartment to vaporize at least a portion of an initial liquid content in the biomass material, said superheated vapor stream comprising at least one volatile organic compound; separating a vapor component and a solid component from the heated biomass material, said vapor component comprising at least one volatile organic compound; and retaining at least a portion of the gas component for use as part of the superheated vapor stream.
Abstract:
Systems, methods and compositions are shown and described. In one embodiment, a method of generating a hybrid liquid hydrocarbon fuel (HLHF) comprises locating a vineyard having a supply of grape waste (GW); loading the GW into a delivery system; delivering the GW to a transformation facility having a GW trough; depositing the GW into the GW trough; distilling the GW into ethanol; and mixing the ethanol with gasoline or diesel, thereby generating the HLHF.