Abstract:
This invention has two main embodiments. An opposed piston 2-stroke axial engine and a 4-stroke axial engine. The opposed piston two stroke also offers an option of a novel cylinder deactivation design. Both, two stroke and four stroke engines share novel systems for coupling piston reciprocation to shaft rotation, piston and piston ring lubricant distribution, and provision for reacting out piston side load with minimum mechanical friction.
Abstract:
A camshaft includes, as a cam that opens and closes an exhaust valve and an intake valve, a ball cam whose protrusion amount changes according to rotation of the camshaft, wherein the camshaft has a double structure consisting of an inner shaft and an outer shaft provided in a manner that the inner shaft is helically displaced with respect to the outer shaft around an axis of the camshaft according to a rotation speed of the camshaft, and the ball cam is accommodated movably in a guide groove provided in the inner shaft and protrudes from the outer shaft, and a protrusion amount of the ball cam from the outer shaft changes when the ball cam moves in the guide groove due to the helical displacement of the inner shaft with respect to the outer shaft.
Abstract:
This invention has two main embodiments. An opposed piston 2-stroke axial engine and a 4-stroke axial engine. The opposed piston two stroke also offers an option of a novel cylinder deactivation design. Both, two stroke and four stroke engines share novel systems for coupling piston reciprocation to shaft rotation, piston and piston ring lubricant distribution, and provision for reacting out piston side load with minimum mechanical friction
Abstract:
A method of controlling intake and exhaust cam phase in an internal combustion engine includes sensing an engine speed and an engine load of the internal combustion engine, sensing or estimating a wall temperature of a cylinder of the internal combustion engine, utilizing the engine speed and the engine load in one or more lookup tables based on the cylinder wall temperature to determine intake phaser constraint values and exhaust phaser constraint values for cold operation of the internal combustion engine, and transitioning the intake phaser constraint values and the exhaust phaser constraint values for cold operation to intake phaser constraint values and exhaust phaser constraint values based on one or more lookup tables for normal hot operation of the internal combustion engine.
Abstract:
An internal combustion engine including: a cylinder block in which a plurality of cylinders are formed; and a cylinder head formed in conjunction with the cylinder block into one body to form a plurality of combustion chambers, wherein an upper surface of the cylinder head is divided, along a direction in which the plurality of cylinders are arranged, into first regions that are regions that overlap the combustion chambers as viewed from an axial direction of the cylinders and a second region that is a region located between two of the first regions adjacent to each other, and at least either an intake-side cam journal or an exhaust-side cam journal is disposed in the second region.
Abstract:
A cam and follower apparatus adapted to translate the force of a piston to turn the shaft of an engine. The cam profile is made of three intersecting circles allowing for one follower to be near top dead center while another follower is near bottom dead center. The surface of the follower is a circle which shares the same center point and radius with the circles of the cam profile. The surface of the follower also closely intersects the axis of the follower preventing the follower from spinning like a roller follower. The follower can therefore spread the force from the piston to a wider area on the cam for longevity.
Abstract:
A valve stem sealing unit (65) for forming a seal round a valve stem (41, 43) of a poppet valve (19, 21) in an engine (1) having a body (5, 7, 13) and operated by a working fluid, the valve stem sealing unit (65) including: a housing (67) defining a through passage (79) running from a first end to a second end, the through passage (69) being arranged to receive a portion of the valve stem (41, 43); a first seal (85) arranged to form a seal between the valve stem (41, 43) and the housing (69) to prevent egress of the working fluid from the first end of the housing (69); and a second seal (89) arranged to form a seal between the housing (69) and a body (5, 7, 13) of the engine (1) to prevent egress of the working fluid from the second end of the housing (69).