Abstract:
Radiation receiver with a photodetector and a sensor, wherein the sensor receives the radiation intensity, and a shutter arranged before the photodetector is driven in dependence on the detected incident radiation intensity. The incident radiation is supplied to the photodetector via a delay device arranged before the shutter, so that no radiation destroying the photodetector can reach the photodetector, due to the shutter having been driven, and can if necessary be kept away or absorbed by the shutter.
Abstract:
An eye protection arrangement for protection against multispectral laser threats includes goggles or spectacles with a tunable etalon optical filter. In one embodiment, the optical filter is fixed-tuned to a safe frequency. In another embodiment, light from the laser being used is sensed, and used to set the protective goggles to a different wavelength than the laser. In yet another embodiment of the invention, the protective optical filters have a comb response, and additional protection is provided by optically cascading two filters, each having a somewhat different comb response, so as to reduce the number of transmission spectra.
Abstract:
A radiation detector capable of withstanding illumination by relatively concentrated electromagnetic energy is disclosed herein. The radiation detection system 10 of the present invention includes a sensor assembly 14 for generating radiant energy upon illumination by incident electromagnetic radiation R. The sensor assembly 14 will preferably include a sheet of metallic foil 24 for emitting the radiant energy into a sensor chamber defined by the assembly 14. The inventive radiation detection system 10 further includes an optical fiber cable 18 in communication with the sensor chamber. Radiant energy from within the sensor chamber is guided by the fiber cable 18 to a shielded detector arrangement 20 disposed to provide a detection signal indicative of the intensity of the incident electromagnetic radiation R.
Abstract:
A filter assembly for selectively removing preselected individual emission lines of laser energy from the visible spectrum comprising at least one pair of Fabry-Perot type filters which transmit laser energy emissions for dissipation in the filter assembly and reflect harmless radiation for transmission through the assembly. A plurality of these filter assemblies parallelly juxtaposed are also used to provide a filter screen for protection against laser energy emissions.
Abstract:
Described herein is a method and apparatus for the nonlinear limiting of coherent radiant energy based upon the discovery of materials exhibiting nonlinear absorption. This discovery provides a method upon which the operation of apparatus for limiting, detecting and modulating coherent radiant energy is based.
Abstract:
A method for monitoring radiation by an optical sensor which generates a signal, such as a shut-off signal, which influences the radiation when subjected to radiation. A sensor with dark current pulses is used, which are assessed as a functional capability signal of the sensor.
Abstract:
A substantially planar or curved panel having a plurality of radiant energy sensors disposed about the periphery of the panel which sensors detect a portion of radiant (e.g. laser) energy incident on to the planar panel reflected or refracted to the planar panel periphery or non-periphery surface. From the radiant energy detected by a plurality of peripherally (or other surface) disposed sensors, information such as intensity, may be rapidly determined in a non-destructive environment and related instrumentation is controlled. In one embodiment, the source of radiant energy is controlled, e.g. turned off, in response to radiant energy deemed excessive, received on the exemplary embodiments of the present invention.
Abstract:
An optical sensor arrangement includes two sensors arranged one behind the other. The operational spectral ranges of the sensors match, and the first sensor forms an attenuation filter for the second sensor, which is arranged behind the first sensor.
Abstract:
A faceted dome assembly for airborne optical sensors to enhance EMI shielding and lightning protection is disclosed. In one embodiment, the faceted dome assembly includes a faceted dome. An optical sensor and a gimbal are housed in the faceted dome. Further, a conductor is disposed substantially in the facets of the faceted dome to provide the enhanced electromagnetic shielding and lightning protection.
Abstract:
A filter and method for filtering an optical beam are disclosed. One embodiment of the filter is an optical filter for filtering an incident light beam, comprising an optically effective material characterized by: a light transmittance of less than 1% for wavelengths below 420 nm; and a light transmittance for wavelengths complementary and near complementary to wavelengths below 420 nm that, combined with the transmittance for wavelengths below 420 nm, will yield a filtered light beam having a luminosity of about 90% and an excitation purity of 5% or less. The complementary wavelengths can be wavelengths above about 640 nm, wavelengths above about 660 nm, and/or wavelengths from about 540 nm to about 560 nm.