Abstract:
A spectrometer employs multiple filters having complex filter spectra that can be generated robustly from received light over short optical path lengths. The complex filter spectra provide data that can be converted to a spectrum of the received light using compressed sensing techniques. The result is a more compact, easily manufactured spectrometer.
Abstract:
The present invention relates to a spectral detection device (100) for detecting spectral components of received light, wherein the spectral detection device (100) comprises a filtering structure (110) arranged to filter the received light and output light with a wavelength within a predetermined wavelength range; and a light sensor (120) arranged to detect the light output by the filtering structure (110), wherein the filtering structure (110) is variable to allow a variation of the predetermined wavelength range over time.The arrangement enables a compact spectral detection device that may be provided at a low cost.
Abstract:
A spectrometer employs multiple filters having complex filter spectra that can be generated robustly from received light over short optical path lengths. The complex filter spectra provide data that can be converted to a spectrum of the received light using compressed sensing techniques. The result is a more compact, easily manufactured spectrometer.
Abstract:
A spectrometer (10) for gas analysis is provided, the spectrometer comprising a measurement cell (28) having a gas to be investigated, a light source (12) for the transmission of light (14) into the measurement cell (28) on a light path (16), a filter arrangement (22) having a Fabry-Perot filter (24a-c) in the light path (16), in order to set frequency properties of the light (14) by means of a transmission spectrum of the filter arrangement (22), as well as a detector (36, 38) which measures the absorption of the light (14) by the gas (30) in the measurement cell (28). In this connection the filter arrangement (22) has a plurality of Fabry-Perot filters (24a-c) arranged behind one another in the light path (14) and a control unit (44) for the filter arrangement (22) is provided in order to change the transmission spectrum by setting at least one of the Fabry-Perot filters (24a-c).
Abstract:
A simulated sunlight generating device for generating a simulated sunlight required for evaluating performance of solar cells includes a plurality of driving units, a plurality of light-emitting units, and a plurality of adjusting units. The driving units drive the light-emitting units to emit light. The adjusting units enable the light of the light-emitting units to not only propagate along the same light route but also be added up and combined to form the simulated sunlight of an intended wavelength with ease of installation, ease of maintenance, low costs, high flexibility, and high efficiency.
Abstract:
A system and method for a hyperspectral illuminator. The hyperspectral illuminator includes an LED array for generating light of a predefined spectra. The hyperspectral illuminator further includes multiple collimators. Each of the multiple collimators is associated with one an LED of the LED array and focus the light into beams. The hyperspectral illuminator further includes multiple dichroic filters. The dichroic filters filter the beams. The hyperspectral illuminator further includes one or more integrator lenses for mixing the filtered beams into a uniform pattern for projection on to a target.
Abstract:
A self-collimator concave spectral shaping device for chirped-pulse-amplification (CPA): uses a spectrum decomposing system with CTSI construction, a spectrum synthesizing system with CTSI structure that is symmetrical to the decomposing structure, and a spectrum shaping system including an aperture and a planar reflector for spectrum shaping function design. The device accomplishes the following functions: firstly decomposing the spectrum of a chirped temporal pulse laser to a spectral domain; then shaping the spectrum in the spectral domain; finally synthesizing un-shiftily this shaped spectrum in the spectral domain into a temporal chirped pulse with a designed shape. The device has the feature of requiring less optical components, compacting the structure, requiring less space, cheap in cost, and running stability, for its small size of concave reflector, and its self-collimation and its symmetrical distribution, which it can be not only utilized in a general laser spectrum shaping and spectrum modulation, but also can be utilized for a high energy and ultra-high peak-power laser system in chirped pulse amplification with a large caliber and with a chirped pulse bandwidth of a few nanometers.
Abstract:
A color identifying display system having a lighting surface having an alterable apparent surface color, a color capture device to capture a color of an object placed within a detection area, and a processor. The lighting surface and the color capture device are coupled to the processor. The processor analyzes the captured color to determine a prominent color of the object and to control a color of the lighting surface based on the determined prominent color. The color of the lighting surface may be adjusted to match the prominent color, complement the prominent color, or be analogous to the prominent color.
Abstract:
A radiation generation device for generating resulting electromagnetic radiation having an adjustable spectral composition includes: a multitude of radiation elements (configured to generate a radiation element specific electromagnetic radiation, respectively, upon being activated, a first radiation element of the multitude of radiation elements being activatable independently of a second radiation element of the multitude of radiation elements; a dispersive optical element; and an optical opening; the dispersive optical element being configured to deflect the radiation element specific electromagnetic radiations, in dependence on their wavelength and on a position of the radiation element generating the respective radiation element specific electromagnetic radiation, such that a particular spectral range of each of the radiation element specific electromagnetic radiations may exit through the optical opening, so that the spectral composition of the resulting electromagnetic radiation exiting through the optical opening is adjustable by selectively activating the multitude of radiation elements.
Abstract:
An analysis system, tool, and method for performing downhole fluid analysis, such as within a wellbore. The analysis system, tool, and method provide for a tool including a spectroscope for use in downhole fluid analysis which utilizes an adaptive optical element such as a Micro Mirror Array (MMA) and two distinct light channels and detectors to provide real-time scaling or normalization.