Abstract:
A spectroscopy system and method includes illuminating a target with a wideband light pulse that includes an entire testing wavelength spectrum. The light pulse is transformed with a dispersive medium to introduce a frequency-based time delay to the light pulse after the light pulse has interacted with a target. The dispersed light pulse is converted to a time-domain electrical signal with a photodiode. The time-domain electrical signal is converted into a spectral profile of the target.
Abstract:
Embodiments of the invention are directed to integrated resonance detectors and arrays of integrated resonance detectors and to methods for making and using the integrated resonance detectors and arrays. Integrated resonance detectors comprise a substrate, a conducting mirror layer, an active layer, and a patterned conducting layer. Electromagnetic radiation is detected by transducing a specific resonance-induced field enhancement in the active layer to a detection current that is proportional to the incident irradiance.
Abstract:
An infrared-sensor filter member includes an optical filter disposed in an opening portion of a second member and a first member. The infrared-sensor filter member includes a recess portion formed from a light-incident surface of the optical filter and the first member. At least a part of a bottom surface of the recess portion is formed by the light-incident surface and side walls of the recess portion, which are formed by the first member.
Abstract:
A chip for plasma generation, a plasma generator, and a plasma spectrometry method are described, having high reproducibility of plasma light emission without a requirement of a discharge unit for removing air bubbles, wherein the chip includes a channel comprising a first region, a narrow portion, and a second region, where the narrow portion is in communication with the first region and the second region and has a cross-sectional area smaller than the first region and the second region.
Abstract:
Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
Abstract:
An optical analysis system, optical device, and optical analysis process are disclosed. The system includes one or more optical filter mechanisms disposed to receive light from a light source and a detector mechanism in operative communication with the one or more optical filter mechanisms to measure properties of filtered light, filtered by the one or more optical filter mechanisms from the received light. The one or more optical filter mechanisms are configured so that the magnitude of the properties measured by the detector mechanism is proportional to information carried by the light filtered. The device is capable of including one of the one or more optical filter mechanisms in the system. The process is capable of relying upon the system, filtering light, and measuring properties of the filtered light.
Abstract:
A measuring apparatus, comprising at least a first light source and a second light source for transmitting light; at least one light receiver for receiving light at least of a first received wavelength and a second received wavelength; at least one dispersing element for bending and/or refracting light; wherein the light transmitted by the light sources strikes the dispersing element and is so turned by the dispersing element that it strikes the light receiver. The first light source is arranged at a first angle relative to the dispersing element and the second light source at a second angle relative to the dispersing element, wherein the second angle differs from the first angle. The first angle is so embodied that the wavelength of the light turned by the dispersing element corresponds to the first received wavelength, and wherein the second angle is so embodied that the wavelength of the light turned by the dispersing element corresponds to the second received wavelength.
Abstract:
The invention is directed to methods and systems of hyperspectral and multispectral imaging of medical tissues. In particular, the invention is directed to new devices, tools and processes for the detection and evaluation of diseases and disorders such as, but not limited to diabetes and peripheral vascular disease, that incorporate hyperspectral or multispectral imaging.
Abstract:
Miniature spectrometers produce low resolution spectral data due to their size limitations. A method for processing these spectral data is proposed. The spectral data from a low resolution spectrometer is enhanced to a higher resolution, or processed to be in the wavelength domain. This process is called spectrum reconstruction, and can be used in low cost and miniature spectrometers with limited spectral resolution. The proposed method is noise robust, adapts to input spectrum, and can be used across many types of spectrometric devices without any manual adjustment of parameters.
Abstract:
Various embodiments for facilitating optical communications utilizing a apparatus are disclosed. One embodiment, among others, is an apparatus that comprises a dispersion element configured to transmit a beam through a plurality of optical paths in a spectral dispersion element to generate a spectrally dispersed beam. The apparatus further comprises a second-harmonic generation (SHG) element integrated into the dispersion element, the SHG element configured to generate second-harmonic light beam from the dispersed beam by splitting the dispersed beam into a plurality of beams, wherein the plurality of beams traverse a common axis. The apparatus further comprises a collimator configured to collimate the second-harmonic light beam over a predetermined path length and a phase decoder configured to receive the collimated beam and measure characteristics associated with the collimated beam.