Abstract:
A manufacturing method of a sensing integrated circuit including the following acts. A plurality of transistors are formed. At least one dielectric layer is formed on or above the transistors. A plurality of connecting structures are formed in the dielectric layer. The connecting structures are respectively and electrically connected to the transistors. A plurality of separated conductive wells are respectively formed in electrical contact with the connecting structures.
Abstract:
The invention provides a detector comprising a metamaterial absorber and a micro-bolometer arranged to detect terahertz (THz) radiation. The metamaterial absorber can absorb multiple frequency bands, from the infrared and the THz regions of the electromagnetic spectrum. The detector is scalable to be suitable for use in a focal plane array.The invention also provides a hybrid of a plasmonic filter, e.g. for optical radiation, and a metamaterial absorber for terahertz (and/or infrared) radiation, to create a single material capable of absorbing narrow band terahertz radiation and filtering radiation in another part of the spectrum, e.g. optical radiation. Such material has great potential in future imaging technology where hybridisation can maximise the spectral information density of an optical system.
Abstract:
A pyroelectric detector includes a first electrode, a second electrode, a pyroelectric body that is disposed between the first electrode and the second electrode, and a first gas barrier layer that covers the pyroelectric body. The first electrode includes a first layer and a second layer. The second layer is disposed between the first layer and the pyroelectric body, and the first layer is a second gas barrier layer.
Abstract:
The present publication describes a heat-resistant optical layered structure, a manufacturing method for a layered structure, and the use of a layered structure as a detector, emitter, and reflecting surface. The layered structure comprises a reflecting layer, an optical structure on top of the reflecting layer, and preferably shielding layers for shielding the reflecting layer and the optical structure. According to the invention, the optical structure on top of the reflecting layer comprises at least one partially transparent layer, which is optically fitted at a distance to the reflecting layer.
Abstract:
A method for making an imager device including the implementation of the steps of: making, through a layer of electric insulating material within which are made one or more pixels each including an antenna able to pick up an electromagnetic wave received at said pixel, of an aperture forming an access to a layer of sacrificial material provided between the layer of electric insulating material and a reflective layer able to reflect said electromagnetic wave; removing part of the layer of sacrificial material through the aperture, forming between the reflective layer and the layer of electric insulating material at least one optical cavity.
Abstract:
A photo detector is disclosed. The photo detector comprises a substrate, a flat metal layer, a dielectric layer, a patterned metal layer, and a semiconductor film. The flat metal layer is formed on the substrate. The dielectric layer is formed on the flat metal layer. The patterned metal layer is, formed on the dielectric layer. The patterned metal layer comprises a first interdigitated electrode and a second interdigitated electrode. The first interdigitated electrode is adjacent to the second interdigitated electrode. The semiconductor film is formed on the dielectric layer and covering the first interdigitated electrode and the second interdigitated electrode. When the semiconductor film receives an incident light, the flat metal layer and the patterned metal layer are operated in a localized surface plasmon mode or a waveguide mode for absorbing a certain narrow bandwidth radiation light of the incident light. Therefore, the electrical conductivity of the semiconductor film is changed and the optical energy absorbed by the photo detector is determined.
Abstract:
In one embodiment, A MEMS sensor assembly includes a substrate, a first sensor supported by the substrate and including a first absorber spaced apart from the substrate, and a second sensor supported by the substrate and including (i) a second absorber spaced apart from the substrate, and (ii) at least one thermal shorting portion integrally formed with the second absorber and extending downwardly from the second absorber to the substrate thereby thermally shorting the second absorber to the substrate.
Abstract:
A pyroelectric detector includes a first electrode, a second electrode, a pyroelectric body that is disposed between the first electrode and the second electrode, and a first gas barrier layer that covers the pyroelectric body. The first electrode includes a first layer and a second layer. The second layer is disposed between the first layer and the pyroelectric body, and the first layer is a second gas barrier layer.
Abstract:
A thermoelectric infrared detector. The detector has an absorption platform comprising a material that increases in temperature in response to incident infrared radiation and the platform covering substantially an entire area of the detector. The detector includes a thermocouple substantially suspended from contact with a substrate by at least one arm connected to the substrate.
Abstract:
In at least one embodiment, an infrared (IR) sensor comprising a thermopile is provided. The thermopile comprises a substrate and an absorber. The absorber is positioned above the substrate and a gap is formed between the absorber and the substrate. The absorber receives IR from a scene and generates an electrical output indicative of a temperature of the scene. The absorber is formed of a super lattice quantum well structure such that the absorber is thermally isolated from the substrate. In another embodiment, a method for forming an infrared (IR) detector is provided. The method comprises forming a substrate and forming an absorber with a plurality of alternating first and second layers with a super lattice quantum well structure. The method further comprises positioning the absorber about the substrate such that a gap is formed to cause the absorber to be suspended about the substrate.