Abstract:
A fiber optic sensor is provided. The fiber optic sensor includes: a fixed portion configured to be secured to a body of interest; a moveable portion; a spring member positioned at least partially between the fixed portion and the moveable portion; an optical fiber wound in contact with the fixed portion and the moveable portion such that the optical fiber spans at least a portion of the spring; and an elastomeric material provided in contact with at least one of the fixed portion, the moveable portion, the spring member, the body of interest, and the optical fiber.
Abstract:
A sensing assembly device includes a substrate, a chamber above the substrate, a first piezoelectric gyroscope sensor positioned within the chamber, and a first accelerometer positioned within the chamber.
Abstract:
The present invention provides a capacitive acceleration sensor with a bending elastic beam and a preparation method. The sensor at least includes a first electrode structural layer, a middle structural layer and a second electrode structural layer; wherein the first electrode structural layer and the second electrode structural layer are provided with an electrode lead via-hole, respectively; the middle structural layer includes: a frame formed on a SOI silicon substrate with a double device layers, a seismic mass whose double sides are symmetrical and a bending elastic beam with one end connected to the frame and the other end connected to the seismic mass, wherein anti-overloading bumps and damping grooves are symmetrically provided on two sides of the seismic mass, and the bending elastic beams at different planes are staggered distributed and are not overlapped with each other in space. Since the bending times, the total length and the total width of the bending elastic beam can be prepared as needed, capacitive acceleration sensors with different sensitivities can be manufactured according to the present invention, and the manufacturing has high flexibility.
Abstract:
Mechanical low pass filters for motion sensors and methods for making same are disclosed. In some implementations, a motion sensor package comprises: a substrate; one or more mechanically compliant dampers formed on the substrate; one or more mechanically compliant metal springs formed on the one or more dampers and the substrate; and a sensor stack attached to the one or more metal springs, wherein the one or more metal springs and dampers provide a mechanical suspension system having a resonant frequency that is higher than a sensing bandwidth of a motion sensor in the sensor stack and lower than a resonant frequency of the motion sensor.
Abstract:
A microelectromechanical system (MEMS) accelerometer having separate sense and force-feedback electrodes is disclosed. The use of separate electrodes may in some embodiments increase the dynamic range of such devices. Other possible advantages include, for example, better sensitivity, better noise suppression, and better signal-to-noise ratio. In one embodiment, the accelerometer includes three silicon wafers, fabricated with sensing electrodes forming capacitors in a fully differential capacitive architecture, and with separate force feedback electrodes forming capacitors for force feedback. These electrodes may be isolated on a layer of silicon dioxide. In some embodiments, the accelerometer also includes silicon dioxide layers, piezoelectric structures, getter layers, bonding pads, bonding spacers, and force feedback electrodes, which may apply a restoring force to the proof mass region. MEMS accelerometers with force-feedback electrodes may be used in geophysical surveys, e.g., for seismic sensing or acoustic positioning.
Abstract:
The invention relates to a printed circuit board arrangement, more particularly a multilayer printed circuit board. The printed circuit board arrangement comprises at least two printed circuit boards which are arranged parallel to one another and connected to one another. According to the invention, in the case of the printed circuit board arrangement of the type mentioned initially, at least one surface region of one printed circuit board is connected to another printed circuit board of the printed circuit board arrangement by means of an element embodied in an elastic and/or damping fashion in such a way that an oscillatory system, more particularly a spring-mass system, an oscillatory bending strip or a flexurally oscillatory board is formed by means of the surface region of the printed circuit board and the element.
Abstract:
A method for manufacturing a micromechanical structure, and a micromechanical structure. The micromechanical structure encompasses a first micromechanical functional layer, made of a first material, that comprises a buried conduit having a first end and a second end; a micromechanical sensor structure having a cap in a second micromechanical functional layer that is disposed above the first micromechanical functional layer; an edge region in the second micromechanical functional layer, such that the edge region surrounds the sensor structure and defines an inner side containing the sensor structure and an outer side facing away from the sensor structure; such that the first end is located on the outer side and the second end on the inner side.
Abstract:
A micropatterned component, for measuring accelerations and/or yaw rates, including a substrate having a principal plane of extension of the substrate, an electrode, and a further electrode; the electrode having a principal plane of extension of the electrode, and the further electrode having a principal plane of extension of the further electrode; the principal plane of extension of the electrode being set parallelly to a normal direction perpendicular to the principal plane of extension of the substrate; the principal plane of extension of the further electrode being set parallelly to the normal direction; the electrode having an electrode height extending in the normal direction; the electrode having a flow channel extending completely through the electrode in a direction parallel to the principal plane of extension of the substrate; the flow channel having a channel depth extending parallelly to the normal direction; the channel depth being less than the electrode height.
Abstract:
An apparatus includes a microelectromechanical system (MEMS) device including a mass anchored to a substrate. The MEMS device is configured to generate an output signal indicative of motion of the mass with respect to the substrate. The MEMS device includes a feedback module configured to provide a control signal to the MEMS device. The control signal is based on the output signal. The MEMS device is configured to apply a damping force to the mass in response to the control signal.
Abstract:
An acceleration sensor can ensure rigidity of its movable electrode despite a large number of through-holes formed in the movable electrode. The acceleration sensor has an SOI substrate in which a silicon oxide layer is formed on a silicon support layer and an active silicon layer is formed on the silicon oxide layer, wherein the active silicon layer of the SOI substrate has a movable electrode supported by elastic beams and configured with a weight, and also has fixed electrodes disposed in a fixed manner around the movable electrode to face the movable electrode, and wherein through-holes penetrating in a Z-axis direction are formed over the entire surface on the inner side of an outer circumference to which the elastic beams of the movable electrode are connected.