Abstract:
A method for generating cross-sectional profiles using a scanning electron microscope (SEM) includes scanning a sample with an electron beam to gather an energy-dispersive X-ray spectroscopy (EDS) spectrum for an energy level to determine element composition across an area of interest. A mesh is generated to locate positions where a depth profile will be taken. EDS spectra are gathered for energy levels at mesh locations. A number of layers of the sample are determined by distinguishing differences in chemical composition between depths as beam energies are stepped through. A depth profile is generated for the area of interest by compiling the number of layers and the element composition across the mesh.
Abstract:
A method for generating cross-sectional profiles using a scanning electron microscope (SEM) includes scanning a sample with an electron beam to gather an energy-dispersive X-ray spectroscopy (EDS) spectrum for an energy level to determine element composition across an area of interest. A mesh is generated to locate positions where a depth profile will be taken. EDS spectra are gathered for energy levels at mesh locations. A number of layers of the sample are determined by distinguishing differences in chemical composition between depths as beam energies are stepped through. A depth profile is generated for the area of interest by compiling the number of layers and the element composition across the mesh.
Abstract:
To improve the workability of the task of adjusting the position of a limit field diaphragm. An electron microscope provided with an image-capturing means for capturing an image of an observation visual field prior to insertion of a limit field diaphragm as a map image, a recording means for recording the map image, an extraction means for capturing an image of the observation visual field after insertion of the limit field diaphragm and extracting the outline of the diaphragm, a drawing means for drawing the outline on the map image, and a display means for displaying the image drawn by the drawing means.
Abstract:
A method for generating cross-sectional profiles using a scanning electron microscope (SEM) includes scanning a sample with an electron beam to gather an energy-dispersive X-ray spectroscopy (EDS) spectrum for an energy level to determine element composition across an area of interest. A mesh is generated to locate positions where a depth profile will be taken. EDS spectra are gathered for energy levels at mesh locations. A number of layers of the sample are determined by distinguishing differences in chemical composition between depths as beam energies are stepped through. A depth profile is generated for the area of interest by compiling the number of layers and the element composition across the mesh.
Abstract:
A method for generating cross-sectional profiles using a scanning electron microscope (SEM) includes scanning a sample with an electron beam to gather an energy-dispersive X-ray spectroscopy (EDS) spectrum for an energy level to determine element composition across an area of interest. A mesh is generated to locate positions where a depth profile will be taken. EDS spectra are gathered for energy levels at mesh locations. A number of layers of the sample are determined by distinguishing differences in chemical composition between depths as beam energies are stepped through. A depth profile is generated for the area of interest by compiling the number of layers and the element composition across the mesh.
Abstract:
The invention relates to a compound objective lens for a Scanning Electron Microscope having a conventional magnetic lens excited by a first lens coil, an immersion magnetic lens excited by a second lens coil, and an immersion electrostatic lens excited by the voltage difference between the sample and the electrostatic lens electrode. For a predetermined excitation of the lens, the electron beam can be focused on the sample using combinations of excitations of the two lens coils. More BSE information can be obtained when the detector distinguishes between BSE's (202) that strike the detector close to the axis and BSE's (204) that strike the detector further removed from the axis. By tuning the ratio of the excitation of the two lens coils, the distance from the axis that the BSE's impinge on the detector can be changed, and the compound lens can be used as an energy selective detector.
Abstract:
An energy dispersive X-ray analyzer is attached to a scanning electron microscope and includes: a SEM controller; a detector; an EDS controller; and a data processor. The data processor generates first and second X-ray mapping image respectively when the SEM controller controls the scanning electron microscope to irradiate the sample with an electron beam under first and second acceleration voltage conditions. The data processor corrects the first X-ray mapping image and the second X-ray mapping image into images that are independent of acceleration voltage condition based on a measurement intensity variation ratio of the X-ray when changed from the first acceleration voltage condition to the second acceleration voltage condition, and controls the display unit to display a difference image between the corrected first X-ray mapping image and the corrected second X-ray mapping image.
Abstract:
The purpose of the present invention is to provide an image processing apparatus and a computer program such that correspondence points between design data and an edge line or between edge lines can be accurately identified for their matching. In an embodiment for achieving the purpose, when positioning between a first pattern formed by a first line segment and a second pattern formed by a second line segment is performed, a first correspondence point and a second correspondence point are set on the first line segment and the second line segment, respectively; a degree of alignment for performing the positioning of the first pattern and the second pattern is calculated on the basis of the distance between the first correspondence point and the second correspondence point; and the position of the first correspondence point and/or the second correspondence point is changed in accordance with a shape difference between the first line segment and the second line segment (see FIG. 2).
Abstract:
To improve an apparatus reliability by applying a voltage suitable to a situation, a charged-particle-beam apparatus 1 of the present invention includes: a sample stage 25; an electrostatic chuck 30; and an electrostatic-chuck controlling unit 13, and generates an image of a sample 24 by irradiating the sample 24 held on the sample stage 25 by the electrostatic chuck 30 with an electron beam 16. The electrostatic-chuck controlling unit 13, when the electrostatic chuck 30 holds the sample 24, applies a preset initial voltage to a chuck electrode of the electrostatic chuck 30; determines whether or not the sample 24 is normally clamped to the electrostatic chuck 30; and increases the voltage applied to the chuck electrode until determining that the sample 24 is clamped normally to the electrostatic chuck 30 if determining that the sample 24 is not clamped normally to the electrostatic chuck 30.
Abstract:
In accordance with an embodiment, a method of adjusting quality of an image of patterns common in shape includes acquiring a first gray value and a first waveform within a reference image, acquiring a sample image, acquiring a second gray value and a second waveform from third and fourth regions within a sample image, respectively, and adjusting the brightness and contrast of the sample image. The first gray value is a standard for the brightness of the image from a first region within a reference image. The first and second waveforms represent a luminance profile of second and fourth regions including edges, respectively. The third and fourth regions correspond to the first and second regions. The brightness and contrast of the sample image are adjusted by matching the first gray value and the first waveform with the second gray value and the second waveform.