Abstract:
For the generation of multiple-energy X-ray radiation, an X-ray tube (10) for generating multiple-energy X-ray radiation includes an anode (12) and a filter (14). At least a first (16) and a second focal spot position (18) are offset from each other in an offset direction (20) transverse to an X-ray radiation projection direction. The filter includes a first plurality (22) of first portions (24) with first filtering characteristics for X-ray radiation and a second plurality (26) of second portions (28) with second filtering characteristics for X-ray radiation. The filter is a directional filter adapted in a such a way that at least a first X-ray beam (30) emanating from the first focal spot position at least partly passes through the filter unit via the first portions, and a second X-ray beam (32) emanating from the second focal spot position passes obliquely through the first and the second portions when passing through the filter unit.
Abstract:
A method of manufacturing an X-ray tube component, includes diffusion bonding or brazing an anode of rhodium, molybdenum or tungsten to a heat spreader of molybdenum, tungsten, or a composite of molybdenum and/or tungsten. Suitable joint materials for diffusion bonding include gold; suitable joint materials for brazing include an alloy of silver and copper, an alloy of silver, copper and palladium, an alloy of gold and copper or an alloy of gold, copper and nickel. The resulting tube component delivers reliable behaviours and the joint can withstand high temperatures, high temperature gradients, fast temperature changes, extremely high radiation and extremely high electric field, while maintaining good high vacuum properties.
Abstract:
The present invention pertains to an apparatus and method for adaptive exposure in imaging systems. An x-ray source for producing x-ray radiation and an x-ray detector for measuring amount of x-ray radiation passing through the human patient and striking the detector can be used. A tomographic image of the human patient or a tomosynthetic image of the human patient can be generated. Region of interest filtering and equalization filtering can be utilized. Filtering can be accomplished with a mechanical shield or shutter or with electronic control of the x-ray source.
Abstract:
Direct write electron-beam-to-x-ray converters are described, which may be programmed to focus x-rays into an arbitrary shape to provide spatial and intensity modulation to irradiate a malady such as a tumor. An integrated structure of the electron beam to x-ray converter comprises a collimating grid containing a target fluid. The collimating grid comprises a plurality of individual cells enclosed in a housing assembly. An electron beam aimed at a selected individual cell of the collimating grid may be converted to an x-ray beam within the target fluid.
Abstract:
A radiation generating apparatus includes a cathode array including a plurality of electron emitting portions, and an anode array including a plurality of targets and a chained connection unit that connects the targets. The chained connection unit includes a plurality of shielding members and a thermal transfer member, the shielding members being arranged at locations corresponding to the locations of the respective targets, and the thermal transfer member having a thermal conductivity higher than a thermal conductivity of the shielding members. The thermal transfer member has a portion that is continuous in a direction in which the targets are arranged.
Abstract:
The present invention relates to the generation of multiple X-ray beams (26). In order to provide a facilitated X-ray source with the capability of increased tube power for providing coherent radiation, for example in differential phase contrast imaging (DPCI), a multiple X-ray beam X-ray source (10) is provided with an anode structure (12) and a cathode structure (14). The anode structure comprises a plurality of liquid metal jets (16) providing a plurality of focal lines (18). The cathode structure provides an electron beam structure (20) that provides a sub e-beam (22) to each liquid metal jet. The liquid metal jets are each hit by the sub e-beam along an electron-impinging portion (24) of the circumferential surface that is smaller than half of the circumference.
Abstract:
An x-ray source is described. During operation of the x-ray source, an electron source emits a beam of electrons. This beam of electrons is focused to a spot on a target by a magnetic focusing lens. In particular, the magnetic focusing lens includes an immersion lens in which a peak in a magnitude of an associated magnetic field occurs proximate to a plane of the target. Moreover, in response to receiving the beam of focused electrons, the target provides a transmission source of x-rays.
Abstract:
This invention provides a source of x-ray flux in which x-rays are produced by e-beams impacting the inner walls of holes or channels formed in a metal anode such that most of the electrons reaching the channel impact an upper portion of said channel. A portion of the electrons from this primary impact will generate x-rays. Most of the electrons scatter but they continue to ricochet down the channel, most of them generating x-rays, until the beam is spent. A single channel source of high power efficiency and high power level x-rays may be made in this way, or the source can be of an array of such channels, to produce parallel collimated flux beams of x-rays.
Abstract:
Periodic spatial patterns of x-ray illumination are used to gather information about periodic objects. The structured illumination may be created using the interaction of a coherent or partially coherent x-ray source with a beam splitting grating to create a Talbot interference pattern with periodic structure. The object having periodic structures to be measured is then placed into the structured illumination, and the ensemble of signals from the multiple illumination spots is analyzed to determine various properties of the object and its structures. Applications to x-ray absorption/transmission, small angle x-ray scattering, x-ray fluorescence, x-ray reflectance, and x-ray diffraction are all possible using the method of the invention.
Abstract:
A radiation generating apparatus 30 according to the present invention including: a radiation generating tube 10 having a target 14, a tubular shielding member 18 that shields a part of a radiation generated from the target 14 and also has an aperture 21 through which the radiation generated from the target 14 passes, and an envelope 1 that has the target 14 so as to be brought into contact with the internal space thereof and also has the tubular shielding member 18 so as to protrude toward an external space thereof; a storage container 1 for storing the radiation generating tube 3 therein; and an insulating liquid 8 that comes in contact with the tubular shielding member 18 and the storage container 1, wherein the tubular shielding member 18 has a protruding portion P, and the protruding portion P is covered with a solid insulating member 9.