Abstract:
A vapor deposition mask (10) has a fine-irregularities structure (14), provided on a contact surface of the vapor deposition mask (10), which is configured to attract, by van der Waals force, a film formation target substrate (30) so as to surround a plurality of apertures (12). The contact surface makes contact with the film formation target substrate (30).
Abstract:
Porous diffuser assemblies including multiple diffuser elements. The porous diffuser assemblies include a diffuser body, a diffuser base coupled to the diffuser body and forming a plenum there between, the diffuser base including a plurality of openings formed therein, and a porous diffuser element disposed in each of the plurality of openings wherein surfaces of the porous diffuser elements are exposed to the plenum. Gas purged chambers and methods of purging a chamber are disclosed, as are numerous other aspects.
Abstract:
In one embodiment, a method for inspecting a blanking plate includes generating a plurality of beams by causing a charged particle beam to pass through a shaping aperture array having a plurality of holes, performing blanking deflection on the plurality of beams by using a plurality of blankers provided in a blanking plate, each of the plurality of blankers corresponding to one of the plurality of beams, writing a first inspection pattern on a substrate by using a first writing mode in which beams that have not been deflected by the plurality of blankers are radiated onto the substrate, writing a second inspection pattern on the substrate by using a second writing mode in which beams that have been deflected by the plurality of blankers are radiated onto the substrate, obtaining a pattern image of the first inspection pattern and a pattern image of the second inspection pattern, the first and second inspection patterns having been formed on the substrate, and determining a defect by comparing the obtained pattern images.
Abstract:
A device and method for printing 3D articles including electronic and functional elements including 3D printer and a plasma jet printer based on a dielectric barrier atmospheric pressure plasma jet system in which both printing and in-situ treatment and post-deposition treatment can be carried out to tailor the materials characteristics. Plasma jet printer comprising of electrodes in the nozzle/print head for applying electric field and generating atmospheric plasma that could be used for non- gravity based highly directional printing in any direction. Integration of dielectric barrier plasma printer and plasma treatment jets with the 3D printer increases the capability of embedding high performance electronics in a 3D printed structure aiding in additive manufacturing of functional devices. Ability to use a range of materials for print head assembly including micro machined silicon increases the resolution of the plasma jet printer to sub-micron level.
Abstract:
A method of etching a first region including a multilayered film, in which first dielectric films and second dielectric films serving as silicon nitride films are alternately stacked, and a second region including a single-layered silicon oxide film is provided. The etching method includes a first plasma process of generating plasma of a first processing gas containing a fluorocarbon gas and an oxygen gas within a processing vessel of a plasma processing apparatus; and a second plasma process of generating plasma of a second processing gas containing a hydrogen gas, nitrogen trifluoride gas and a carbon-containing gas within the processing vessel. A temperature of an electrostatic chuck is set to a first temperature in the first plasma process, and the temperature of the electrostatic chuck is set to a second temperature lower than the first temperature in the second plasma process.
Abstract:
Provided is a method of forming a thin film of a semiconductor device. The method includes forming a precursor layer on a surface of a substrate by supplying a precursor gas into a chamber, discharging the precursor gas remaining in the chamber to an outside of the chamber by supplying a purge gas into the chamber, supplying a reactant gas into the chamber, generating plasma based on the reactant gas, forming a thin film by a chemical reaction between plasma and the precursor layer and radiating extreme ultraviolet (EUV) light into the chamber, and discharging the reactant gas and the plasma remaining in the chamber by supplying a purge gas into the chamber.
Abstract:
An apparatus includes at least one electron beam generator for generating accelerated electrons with which bulk material particles are impingeable during free fall. The electron beam generator has an annular design in which the electrons are emitted and accelerated by an annular cathode. The electrons exit from an electron outlet window in the direction of the ring axis. The annular electron beam generator is arranged in such a way that the ring axis of the electron beam generator is oriented perpendicular to, or at an angle of up to 45° from the horizontal. The apparatus may further include a device for separating bulk material particles arranged above the annular electron beam generator, the bottom wall of said device having at least one opening out of which the bulk material particles fall and, from there, fall through the ring which is formed by the electron beam generator.
Abstract:
A method for processing a semiconductor wafer is provided. The method includes performing a discharging process over the semiconductor wafer in a discharging chamber which is enclosed. The method further includes processing the semiconductor wafer by use of a first processing module after the discharging process. During the discharging process, charged particles applied on the semiconductor wafer are tuned based on the characteristics of the surface of the semiconductor wafer.
Abstract:
A sample observation method includes irradiating a sample with a primary charged particle beam, detecting a secondary charged particle signal obtained by the irradiating, and observing the sample. The method is characterized by causing the primary charged particle beam generated in a charged particle optical lens barrel, which is maintained in a vacuum state, to be transmitted or passed through a separating film disposed to isolate a space in which the sample is placed from the charged particle optical lens barrel; and detecting a transmitted charged particle beam obtained by irradiating the sample, placed in an atmospheric pressure or a predetermined gas atmosphere of a slightly negative pressure state compared with the atmospheric pressure, with the primary charged particle beam.
Abstract:
Inspection apparatus includes an imaging module, which is configured to capture images of defects at different, respective locations on a sample. A processor is coupled to process the images so as to automatically assign respective classifications to the defects, and to autonomously control the imaging module to continue capturing the images responsively to the assigned classifications.