Abstract:
A method for manufacturing a radiofrequency identification device which includes a manufacturing process for an antenna which includes screen-printing turns of an electrically conductive polymer ink onto a transfer paper sheet, and then subjecting the support to heat treatment to bake and polymerize the conductive ink, connection of a chip 14, provided with contacts, to the antenna 12, lamination which includes making the transfer paper sheet integral with a layer of plastic material 16 which constitutes the support for the antenna, by hot press molding, in such a way that the screen-printed antenna and the chip are both embedded within the layer of plastic material, and removal of the transfer paper sheet.
Abstract:
A disposable electronic device has a body constructed of juxtaposed lengths of an elongate, ribbon-like substrate of dielectric material secured together to establish a multiple-layered self-sustaining structure, and circuitry formed on the substrate. At least a portion of the circuitry is constructed of a deconstructable material which is deconstructed to render the device inoperative by at least one of the following: interrupting a securement of juxtaposed lengths of the substrate, exposing the deconstructable material to at least one of ambient conditions including ambient air, ambient light and ambient moisture, and reaching a predetermined accumulated amount of time during which the circuitry is operated. At least a portion of the substrate is constructed of deconstructable material which is deconstructed by exposure to at least one of the ambient conditions to render the device ready for disposal.
Abstract:
A method of applying an edge electrode pattern to a touch screen. The method includes depositing, on a first surface of a decal strip, conductive material in the form of an edge electrode pattern, placing the first surface of the decal strip on one edge of a touch screen, applying heat and pressure to an opposite surface of the decal strip until the edge electrode pattern is transferred from the first surface of the decal strip to the touch screen; and removing the decal strip.
Abstract:
A back-up board for use in drilling holes in printed circuit boards is disclosed. The inventive back-up board comprises outer layers of paper impregnated with a high-density resin, and a core consisting of alternating layers of paper impregnated with low-density resin and dry paper.
Abstract:
A thermostable substrate for flexible circuit boards having excellent flame-resistance, handling, and storage qualities may be produced by treating a substrate of a nonwoven fabric or paper with a flame-resistant, halogen-free polymeric composition. The polymeric composition comprises an aqueous mixture of a copolymerizate of acrylic acid esters and styrene, and an aminoplastic or phenoplastic precondensate to which a mixture of fine-particle red phosphorus and fine-particle ammonium polyphosphate is also added.
Abstract:
A continuous process for producing reinforced resin laminates comprising the steps of impregnating a fibrous substrate with a liquid resin which is free of volatile solvent and is capable of curing without generating liquid and gaseous byproducts, laminating a plurality of the resin-impregnated substrates into a unitary member, sandwiching the laminate between a pair of covering sheets, and curing the laminate between said pair of covering sheets without applying appreciable pressure. The improvement comprises adjusting the final resin content in said resin impregnated substrate at 10 to 90% by weight based on the total weight of said impregnated substrate.
Abstract:
A flame retardant electrical laminate prepared by impregnating a base material with a halogen-containing unsaturated polyester resin which is prepared by dissolving a halogen-containing unsaturated polyester into a polymerizable monomer; and then curing the halogen-containing unsaturated polyester resin; wherein the halogen-containing unsaturated polyester has a molecular weight per 1 mole of unsaturated group of 350 to 1,000, and the cured halogen-containing unsaturated polyester resin has a glass transition temperature of 30.degree. to 90.degree. C.Such electrical laminates not only have excellent flame redardancy but also excellent puching quality at wide temperature range including room temperature.
Abstract:
There is provided a soluble chemical layer affixed to a rigid backing, whereupon an electronic configuration is printed and covered with a lacquer. The pattern and lacquer coating are then separated from the backing by dissolving the soluble chemical. Once free, the pattern is transferred to and fused to the substrate.
Abstract:
A flame retarded copper clad laminate is provided comprising a plurality of paper substrate layers each impregnated with a halogen-containing unsaturated polyester resin containing about 1% to about 30% by weight of a basic filler, and a copper cladding adhesively bonded onto at least one side of the laminate.
Abstract:
An element comprises a support, preferably a continuous polymeric film, and fibrous material, preferably a spun glass fiber web, which is secured to the support and protrudes therefrom, the protruding fibrous material being part of a layer comprising randomly distributed fibers having solid material, especially particulate material, adhered thereto. The element can be prepared from a composition containing solid material dissolved or dispersed in a liquid medium by applying said composition to fibrous material which is partially embedded in one surface of a support and then drying to evaporate the liquid medium.