Abstract:
An electrical laminate comprising a plurality of fibrous cellulosic substrate layers and alternately interposed layers of cured epoxy or unsaturated polyester resin between the adjacent substrate layers, wherein each of the substrate layers is embedded in a matrix of said cured resin which is substantially integral with said layers of cured resin, and consists essentially of cellulosic fibers having thereon a coating of methylol group-containing resin such as aminoplast resins. The laminate may be unclad or cladded with a metal foil.
Abstract:
A high voltage arc-resistant laminate for printed circuit boards comprising a substrate and metallic foil bonded on one or both surfaces of the substrate. The substrate includes core sheets of cellulosic paper impregnated with a resin formulation comprising an admixture of resin solids including a major amount of phenolic resins, and minor amount of curing agents for the resins, and face sheets of glass fiber cloth impregnated with a resin formulation consisting substantially entirely of brominated aromatic epoxy resin solids, and minor amount of dicyandiamide curing agent and amine catalyst along with, antimony oxide, thixotropic agent, and pigments. Also disclosed is a process for manufacturing the laminate. A high temperature resistant embodiment is also disclosed in which the core sheet resin is brominated aromatic epoxy instead of phenolic resin.
Abstract:
A prepreg useful in flame resistant copper clad printed circuit boards is made by impregnating a porous substrate with an impregnant containing: either a prebrominated epoxy resin or a mixture of a non-halogenated epoxy resin and flame retarding additive containing bromine, and phenolic hydroxyl groups. A phenolic novolac oligomer having an average of over 2.5 phenolic hydroxyl groups per oligomeric unit is used as curing agent. Optionally, a suitable catalyst may be included. The impregnated substrate is heated to cure or advance the resin to the "B"-stage.
Abstract:
Increased elasticity of a laminate is obtained by adding 5-20% by weight of a blocked polyetherurethane component from a reaction product of polyethylene glycol, polypropylene glycol and p-nonylphenol with toluene-2,4-diisocyanate having the following composition:______________________________________ polyethylene glycol 15-20% by weight polypropylene glycol 50-60% by weight toluene-2,4-diisocyanate 8-12% by weight nonylphenol 10-15% by weight ______________________________________ in the manufacture of a fire resistant laminate based on a cellulose-containing substrate material and an impregnating varnish made up of a phenol-resol with additives of plasticizers and flame retardants. A copper-laminated hard paper made of this phenolic resin laminate is distinguished by reduced punching resistance and stripping resistance.
Abstract:
A continuous process for producing reinforced resin laminates comprising the steps of impregnating a fibrous substrate with a liquid resin which is free of volatile solvent and is capable of curing without generating liquid and gaseous byproducts, laminating a plurality of the resin-impregnated substrates into a unitary member, sandwiching the laminate between a pair of covering sheets, and curing the laminate between said pair of covering sheets without applying appreciable pressure. The improvement comprises adjusting the final resin content in said resin impregnated substrate at 10 to 90% by weight based on the total weight of said impregnated substrate.
Abstract:
A laminate comprising at least one inorganic or organic fiber nonwoven fabric impregnated with a cyanic acid ester resin composition, at least one glass fabric impregnated with an epoxy resin composition, and at least one of the outermost layers being the glass fabric impregnated with an epoxy resin composition.
Abstract:
A method of improving the dimensional and thermal stability of a fibrous web containing substrate is disclosed. A uniformly or randomly spun or bonded fabric or textile support is impregnated with a curable polymer resin, e.g., an epoxy-polyester resin. The impregnated resin is then fully cured whereupon a polymer resin coat is applied thereto. The coat is maintained in a partial cure state whereby a laminate comprising an internal woven or bonded fabric skeleton impregnated with a fully cured polymer resin and coated with a layer of a partially cured polymer resin is obtained.
Abstract:
In a printed circuit board, on which there are formed printed components such as resistors and capacitors and printed conductors, which comprise silver or silver powder and resin, such as an electrode of a component and a connecting conductor, there are provided under coating layer and/or an over coating layer comprising insulating resin and an organic inhibitor so as to prevent migration of silver from the conductor of a higher potential to the conductor of a lower potential.
Abstract:
The disclosed laminate is suitable for use in the art of printed circuitry and comprises an electrically conductive layer and a nonwoven backing layer. The nonwoven backing has unusual dimensional stability under a wide variety of conditions and preferably comprises a blend of at least 15 wt. % polyester staple and at least 10 wt. % aromatic polyamide staple. This blend is impregnated with a thermosettable resin.
Abstract:
Dielectric materials including non-woven inorganic fabrics impregnated with a low-density resin are disclosed. The dielectric materials may have a thickness in a range of about 5 to about 125 microns for use in printed circuit boards.