Abstract:
The present invention relates to a method for producing a conductor structural element, comprising providing a rigid substrate, electrodepositing a copper coating on the rigid substrate, applying a conductor pattern structure to the copper coating, then possibly mounting components, laminating the substrate with at least one electrically insulating layer, detaching the rigid substrate, at least partially removing the remaining copper coating of the rigid substrate in such a way that the conductor pattern structure is exposed.
Abstract:
Electronic assemblies and methods for their manufacture are described, including those related to the formation of an assembly including a carrier and a resin coated copper layer positioned on the carrier. The resin coated copper layer includes a first layer comprising a resin and a second layer comprising copper, with the first layer bonded to the second layer. The first layer of the resin coated copper is positioned between the carrier and the second layer of the resin coated copper. An opening is formed in the second layer of the resin coated copper. A die is positioned in the opening. A plurality of dielectric layers and metal pathways are positioned on the second layer and on the die. Other embodiments are described and claimed.
Abstract:
The present invention provides a surface-treated copper foil capable of imparting the profile shape of the substrate surface after removal of the copper foil, the profile shape maintaining fine wiring formability and achieving satisfactory adhesion of electroless copper plating coating. The present invention also provides a resin substrate provided with a profile shape of the surface maintaining fine wiring formability and achieving satisfactory adhesion of electroless copper plating coating. The surface-treated copper foil of the present invention is a surface-treated copper foil, wherein a surface-treated layer is formed on a copper foil, and the proportion of the area corresponding to the particles of the surface of the surface-treated layer is 0.1 to 0.85.
Abstract:
A printed wiring board includes an insulative resin substrate having a penetrating hole, a first conductive layer formed on first surface of the substrate, a second conductive layer formed on second surface of the substrate on the opposite side, and a through-hole conductor formed in the penetrating hole and connecting the first and second conductive layers. The through-hole conductor includes a seed layer on inner wall of the penetrating hole, a first electrolytic plated layer on the seed layer such that the first plated layer is filling the space formed by the seed layer in the penetrating hole and forming recesses at the ends of the penetrating hole, respectively, and second electrolytic plated layers filling the recesses, respectively, and the second plated layers includes electrolytic plating having an average crystalline particle diameter greater than an average crystalline particle diameter of electrolytic plating forming the first plated layer.
Abstract:
The present invention relates to a detach core substrate and a method of manufacturing a detach core substrate. In accordance with one embodiment of the present invention, there is proposed a detach core substrate that a conductive layer including a metal layer with an etching property different from copper is formed on a top surface and a bottom surface of an insulating layer formed thereon a surface roughness. At this time, the contact interface between the top surface and the bottom surface of the insulating layer is the detachment interface to be separated during the manufacture of the circuit board. In addition, a method of manufacturing the detach core substrate is proposed.
Abstract:
The invention provides a varnish produced through reaction between a compound having an amino group and a resin having a functional group capable of reacting with an amino group, and having a polycyclic structure, wherein a portion of a plurality of the functional group of the resin is caused to react with the amino group of the compound in a solvent, and also a varnish produced through reaction between a compound having a phenolic hydroxyl group and a resin having a functional group capable of reacting with a phenolic hydroxyl group, and having a polycyclic structure, wherein a portion of a plurality of the functional group of the resin is caused to react with the phenolic hydroxyl group of the compound in the solvent. The invention also provides a prepreg, a resin-coated film, a metal-foil-clad laminate, and a printed wiring board produced by use of any of the varnishes.
Abstract:
A semiconductor lighting device may include a substrate populated with at least one semiconductor light source, wherein at least one reflective surface region of the substrate is covered with a light-reflecting layer, and wherein the light-reflecting layer has an aluminum carrier coated in a reflection-intensifying manner.
Abstract:
An angle-adjustable printed circuit board structure having two printed circuit board sections arranged angularly with respect to one another. The printed circuit board structure contains at least one conduction element which is embedded at least predominantly in the printed circuit board structure and which extends between two contact pads and is electrically conductively connected to said contact pads. The two contact pads are situated on different printed circuit board sections. The printed circuit board sections are angle-adjustable and/or angled relative to one another with maintenance of the connections between the contact pads and the at least one conduction element and with bending of the at least one conduction element via a bending edge between the printed circuit board sections. The conduction element has a larger extent along the bending edge than perpendicularly thereto, as viewed in cross section.
Abstract:
A method for manufacturing an antenna sheet, includes: a pressing step in which an overlapped portion of an antenna coil and/or a connection pattern formed from a metal material and provided on one surface of a substrate formed from a thermoplastic resin, and a conductive member formed from a metal material and provided on the other surface of the substrate is pressed using a pressing unit at least from the surface of one side of the substrate; and a welding steps in which the overlapped portion of the antenna coil and/or the connection pattern and the conductive member is welded.
Abstract:
A method and electrical interconnect structure internal to a printed circuit board for the purposes of creating a reliable, high performing connection method between embedded component terminals, signal traces and or power/ground planes which may occupy the same vertical space as the embedded components, such as a capacitor or resistor. Further easing the assembly and reliability through the manufacturing process of said embedded component structures. In one structure castellated drilled, plated vias connect the trace or plane within the printed circuit board to the electrical terminals of the embedded component using a permanent and highly conductive attach material. In another structure, the trace or plane connect by selective side-wall plating, which surrounds the electrical terminal of the component. This structure also uses a permanent and highly conductive attach material to electrically connect the component terminal to the plated side-wall and in a final embodiment the terminals are connected through a conductive attach material through a via in the z axis to a conductive pad.