Abstract:
Greater planarity is achieved between surfaces of a conductive structure and a layer within which the conductive structure resides. A portion of the conductive structure protruding above the surface of the layer is selectively oxidized, at least in part, to form an oxidized portion. The oxidized portion is then removed, at least partially, to facilitate achieving greater planarity. The protruding portions may optionally be formed by selectively disposing conductive material over the conductive structure, when that the conductive structure is initially recessed below the surface of the layer. A further embodiment includes selectively oxidizing a portion of the conductive structure below the surface of the layer, removing at least some of the oxidized portion so that an upper surface of the conductive structure is below the upper surface of the layer, and planarizing the upper surface of the layer to the upper surface of the conductive structure.
Abstract:
One aspect of the present invention is a three-dimensional structure that has a concave-convex form including a gutter for wiring having at least partially a width of 20 μm or less, wherein at least a part of a wiring conductor is embedded in the gutter for wiring, and a wiring that extends in such a manner as to creep along the concave-convex form is provided.
Abstract:
A package carrier including a removable supporting plate and a circuit board is provided. The removable supporting plate includes a dielectric layer, a copper foil layer and a releasing layer. The dielectric layer is disposed between the copper foil layer and the releasing layer. The circuit board is disposed on the removable supporting plate and directly contacts the releasing layer. A thickness of the circuit board is between 30 μm and 100 μm.
Abstract:
A process for the preparation of a printed wiring board that can prevent generation of crack and warpage is provided. A process for the preparation of a printed wiring board, comprising a step of forming a curable resin layer and a non-curable resin layer sequentially on a surface of a substrate; a step of forming depressions in the non-curable resin layer and the curable resin layer from the non-curable resin layer side; a step of applying a catalyst for plating to a surface of the non-curable resin layer and surfaces of the depressions; a step of removing the non-curable resin layer and the catalyst for plating provided on the surface of the non-curable resin layer; and a step of electroless plating the surfaces of the depressions.
Abstract:
The present invention relates to a method for fabricating blackened conductive patterns, which includes (i) forming a resist layer on a non-conductive substrate; (ii) forming fine pattern grooves in the resist layer using a laser beam; (iii) forming a mixture layer containing a conductive material and a blackening material in the fine pattern grooves; and (iv) removing the resist layer remained on the non-conductive substrate.
Abstract:
Provided is a method for manufacturing a metal printed circuit board, the method including: printing a circuit pattern on a release film; applying a heat conductive insulating layer on the circuit pattern; laminating a heat conductive base layer on the heat conductive insulating layer and hot pressing the laminated heat conductive base layer and the heat conductive insulating layer; and removing the release film therefrom.
Abstract:
A method for manufacturing a package substrate is provided, including etching a substrate to form trenches each having a buffer portion, and forming a circuit in each of the trenches. The trenches are formed by etching instead of excimer laser to increase the aspect ratio of the trench, thereby solving the problem that the metallic layer is not thick enough and achieving a high yield of the circuit and a good process capability index.
Abstract:
In a ceramics substrate comprising a surface layer conductor having a sufficient thickness for a flow of a large current, wherein the conductor is buried in a surface region of the substrate, a crack caused by a temperature change of the substrate is effectively suppressed. In the ceramics substrate comprising the surface layer conductor having the sufficient thickness for the flow of the large current, wherein the conductor is buried in the surface region of the substrate, a shape of a cross section of a part of the surface layer conductor, the part being buried in a base, cut by a plane perpendicular to the surface is configured such that an end portion of the buried part at a side of the surface is wider than an end portion of the buried part at a side opposite to the surface.
Abstract:
A conductive micro-wire structure includes a substrate. A plurality of spaced-apart electrically connected micro-wires is formed on or in the substrate forming the conductive micro-wire structure. The conductive micro-wire structure has a transparency of less than 75% and greater than 0%.
Abstract:
Disclosed herein is a Light Emitting Diode (LED) backlight unit without a Printed Circuit board (PCB). The LED backlight unit includes a chassis, insulating resin layer, and one or more light source modules. The insulating resin layer is formed on the chassis. The circuit patterns are formed on the insulating resin layer. The light source modules are mounted on the insulating resin layer and are electrically connected to the circuit patterns. The insulating resin layer has a thickness of 200 μm or less, and is formed by laminating solid film insulating resin on the chassis or by applying liquid insulating resin to the chassis using a molding method employing spin coating or blade coating. Furthermore, the circuit patterns are formed by filling the engraved circuit patterns of the insulating resin layer with metal material.