Abstract:
A method for fabricating a circuit board having a conductive structure is disclosed. The method includes: forming first and second insulating protective layers respectively on first and second surfaces of a circuit board; forming a conductive layer on the first insulating protective layer and the openings; forming first and second resist layers on the conductive layer and the second insulating protective layer respectively; forming first electrically connecting structures by electroplating on the exposed conductive layer over a plurality of first and second electrically connecting pads in openings of the first resist layer; removing the first and the second resist layers and the conductive layer covered by the first resist layer; and forming second electrically connecting structures by stencil printing on the conductive layer over the second electrically connecting pads on the first surface and on a plurality of third electrically connecting pads of the second surface of the circuit board.
Abstract:
An electronic device includes a first die that includes wires for bonding, a second die that includes an array of balls for bonding, and a substrate. The substrate includes bond sites for wires from the first die, and bond sites for the array of balls from the second die. The wires of first die are coupled to the bond sites for wires of the substrate. The balls of the second die are coupled to the bond sites for the array of balls of the substrate.
Abstract:
An integrated bus bar structure plate in which a plurality of bus bars are arranged on substantially the one plain face to form an electric power circuit, wherein after the bus bar structure plate having a whole shape in which a plurality of types of electric power circuits are formed by selecting any of the connection parts of the bus bars is separated is adhered to the control circuit board whereby, for example, a desired electric power circuit is formed among the connection parts of bus bars.
Abstract:
A circuit substrate is described where the circuit substrate has a first wiring group extending in a first direction and a second wiring group extending in a second direction substantially orthogonal to the first direction. The first wiring group of the circuit substrate is stronger than the second wiring group, and the second wiring group bends more easily than the first wiring group, which results in directional flexibility of said circuit substrate.
Abstract:
A semiconductor device and a method of fabricating the same may be provided. The semiconductor device may include an insulation material as a base frame of a PCB, including an opening penetrating the insulation material with sidewalls plated with a gold (Au) layer. The semiconductor device may further include a printed circuit board for use in a module, having a pad whose surface may be coated with an organic solderability preservative (OSP) and an opening whose sidewalls may be plated with a nickel (Ni) layer and a gold (Au) layer, and a semiconductor device mounted on the PCB via the pad. During a temperature cycling reliability test on the semiconductor device, no defects, for example, cracks may form inside the opening.
Abstract:
This invention provides a multilayer printed wiring board in which electric connectivity and functionality are obtained by improving reliability and particularly, reliability to the drop test can be improved. No corrosion resistant layer is formed on a solder pad 60B on which a component is to be mounted so as to obtain flexibility. Thus, if an impact is received from outside when a related product is dropped, the impact can be buffered so as to protect any mounted component from being removed. On the other hand, land 60A in which the corrosion resistant layer is formed is unlikely to occur contact failure even if a carbon pillar constituting an operation key makes repeated contacts.
Abstract:
A method for fabricating connection terminals of a circuit board is proposed. The method involves providing a circuit board with connection pads thereon, forming an insulating layer with first openings over the circuit board to expose the connection pads, forming a conductive layer over the insulating layer, forming a first resist layer with second openings over the conductive layer to partially expose the conductive layer, electroplating a first metal connection layer on the exposed conductive layer, followed by forming a second resist layer with third openings over the first conductive layer to partially expose the first metal connection layer, and electroplating a second metal connection layer on the exposed first connection layer, and removing portions of the first and second resist layers and conductive layer covered by the first and second resist layers to form metal connection material of different heights and sizes on the connection pads.
Abstract:
An electronic device includes a first die that includes wires for bonding, a second die that includes an array of balls for bonding, and a substrate. The substrate includes bond sites for wires from the first die, and bond sites for the array of balls from the second die. The wires of first die are coupled to the bond sites for wires of the substrate. The balls of the second die are coupled to the bond sites for the array of balls of the substrate.
Abstract:
A method for fabricating a high-frequency and high-power semiconductor module uses two stages respectively adopting a thick-film process to form resistors or elements of high impedance, and a thin film process to form precise circuit wires or elements.
Abstract:
A multilayer wiring board with a high degree of heat resistance, which is capable of low temperature fusion without the occurrence of resin flow, enables high precision, finely detailed conductive wiring, can be ideally applied to low volume high mix manufacturing configurations, and also has little impact on the environment is provided, together with a semiconductor device mounting board using such a multilayer wiring board, and a method of manufacturing such a multilayer wiring board. In the multilayer wiring board, grooves for forming a wiring circuit and via holes are formed in an insulating substrate formed from a thermoplastic resin composition comprising a polyarylketone resin with a crystalline melting peak temperature of at least 260° C. and an amorphous polyetherimide resin as the primary constituents, a metallic foil is embedded within the grooves so that the surface of the foil protrudes to the surface of the insulating substrate, and a conductive material formed by curing a conductive paste is used for filling the via holes.