Abstract:
Electronic devices and methods for fabricating electronic devices are described. One method includes providing a substrate with a plurality of bonding pads thereon, and providing a plurality of solder microballs, the microballs including a coating thereon. The method also includes flowing the solder microballs onto the substrate and positioning the solder microballs on the bonding pads. The method also includes heating the solder microballs to reflow and form a joint between the solder microballs and the bonding pads. Other embodiments are described and claimed.
Abstract:
A circuit board may include a pump and a channel. The channel may include a liquid metal and a coating. The liquid metal may be pumped through the channel by the pump and the coating reduces diffusion and chemical reaction between the liquid metal and at least portions of the channel. The liquid metal may carry thermal energy to act as a heat transfer mechanism between two or more locations on the substrate. The substrate may include electrical interconnects to allow electrical components to be populated onto the substrate to form an electronics assembly. The pump may be driven by electric current that is utilized by one or more electronic components on the circuit board.
Abstract:
A circuit board includes a pump and a channel. The channel includes a liquid metal and a coating. The liquid metal is pumped through the channel by the pump and the coating reduces diffusion and chemical reaction between the liquid metal and at least portions of the channel. The liquid metal can carry thermal energy to act as a heat transfer mechanism between two or more locations on the substrate. The substrate may include electrical interconnects to allow electrical components to be populated onto the substrate to form an electronics assembly.
Abstract:
A composite conductive film formed of a polymer-matrix and a plurality of conductive lines less than micro-sized and its fabricating method are provided. The conductive lines are arranged parallel and spaced apart from each other so as to provide anisotropic conductivity. The present conductive film can serve as an electrical connection between a fine-pitch chip and a substrate. Additionally, an adhesive layer is formed on two opposite sides of the conductive film along its conductive direction to increase adhesive areas. The strength and reliability of the package using the conductive film are thus enhanced.
Abstract:
A method of forming a self-assembled interconnect structure is described. In the method, a contact pad surface and particles in a solution are brought together. The particles are selected such that they the particles adhere to the contact pad surface. Formation of a contact is completed by pressing an opposite contact into the particles such that an electrical connection is formed via the particles between the opposite contact pad and the substrate surface contact pad. The described self-assembled interconnect structure is particularly useful in display device fabrication.
Abstract:
A light engine (16) includes at least one LED (12) for generating light of one of a plurality of wavelengths. The LED (12) is disposed on the magnetic core printed circuit board (14). A heatsink (26) is disposed in thermal communication with a base (24) and the LED (12) for conducting thermal energy away from the LED (12). The light engine (16) is magnetically attached to the heatsink (26) via a magnet (50) which is attached to the heatsink (26) to create that a magnetic force between the magnetic core board (14) and the heatsink (26).
Abstract:
The invention provides a method of forming a monolayer of substantive particles including the steps of applying to a substrate a curable composition having substantive particles contained therein, the substantive particles having a particle size on at least one dimension thereof of at least 1 micrometer and being in two or more groups of different sizes; exposing the substantive particle-containing curable composition to a source of energy suitable for effecting polymerization of the curable composition for a sufficient time to effect polymerization of a layer of the curable composition having a thickness of no more than 50% of the height of the largest substantive particles; and optionally, removing uncured curable composition. The invention also provides a method of forming a monolayer of substantive particles in a non-random array where the curable composition comprises a ferrofluid composition. The latter method further comprises the step of subjecting the particle-containing curable ferrofluid composition to a magnetic field for a sufficient time to array the particles in a non-random manner in the composition prior to the exposure.
Abstract:
The production of electronic and/or optoelectronic components on a flexible film (1) can be adapted without a high effort to existing installations, which are usually based on a batch process, by virtue of the fact that, during the production method, the flexible film (1) is fixed on a carrier (2), which is sufficiently mechanically stable for the further processing of the film (1). The film (1) is connected to the carrier (2) by a magnetic layer (3) or a thermoplastic material. After the further processing of the film (1), the carrier (2) can be removed from the film (2) in a state in which it can be reused.
Abstract:
Coupling components to an underlying substrate using a composition of a polymer and magnetic material particles. Upon applying the composition between the component and the printed circuit board, the composition may be subjected to a magnetic field to align the magnetic material particles into a conductive path between the component and the underlying substrate. At the same time the polymer-based material may be cured or otherwise solidified to affix the conductive path formed by the magnetic material particles.