Abstract:
A printed board to be loaded into a printed-board-receiving structure having a backboard and a guide rail, the backboard having a connector plug-in connectable to a connector on the printed board, the guide rail guiding the printed board toward the backboard and having a groove including a sloping portion, the printed board includes a sloping portion forming a projection at an end of the printed board, the projection being fittable and slidable along the groove in the guide rail.
Abstract:
A circuit board includes an electrically conductive sheet having an insulative coating surrounding the conductive sheet, with a surface of the insulative coating around an edge of the conductive sheet having an arcuate or rounded shape. At least one electrical conductor is conformally deposited on at least the rounded insulative coating around the edge of the conductive sheet and defined via photolithographic and metallization techniques. Each electrical conductor on the insulative coating thereon around the edge of the conductive sheet conforms to the arcuate or rounded shape of the insulative coating and, therefore, has an arcuate or rounded shape.
Abstract:
A semiconductor device that includes a metal substrate including a top surface, a bottom surface and four side surfaces, a conductive pattern insulated from the metal substrate, and a semiconductor element mounted on and electrically connected to the conductive pattern. The top surface is insulated. Each of the side surfaces of the metal substrate includes a first inclining side surface and a second inclining side surface so as to form a convex shape protruding outwardly between the top surface and the bottom surface of the metal substrate, and the first inclining side surfaces of a pair of two opposing side surfaces are smaller than corresponding first inclining side surfaces of another pair of two opposing side surfaces.
Abstract:
An electronic component has an element, a pair of terminal portions which are disposed on the element, and an external covering material which covers a part of the terminal portions and the element. The electronic component is configured such that inclined portions are disposed on corner portions of a bottom surface and side surfaces of the external covering material, and the terminal portions are protruded from corner portions where the inclined portions and the bottom surface of the external covering material intersect.
Abstract:
Disclosed are IC package structures having stair stepped layers and which have no plated vias. Such structures can be fabricated either as discrete packages or as strips such as might be beneficial in for use with memory devices wherein critical or high speed signals can be routed along the length of the multi-chip strip package without having to have the signals ascend and descend from the interconnection substrate on which the assembly is mounted to the IC package termination and back as the signal transmits between devices.
Abstract:
A circuit board includes an electrically conductive sheet having an insulative coating surrounding the conductive sheet, with a surface of the insulative coating around an edge of the conductive sheet having an arcuate or rounded shape. At least one electrical conductor is conformally deposited on at least the rounded insulative coating around the edge of the conductive sheet and defined via photolithographic and metallization techniques. Each electrical conductor on the insulative coating thereon around the edge of the conductive sheet conforms to the arcuate or rounded shape of the insulative coating and, therefore, has an arcuate or rounded shape.
Abstract:
The present invention aims to supply an electronic component which is manufactured in a manufacturing process at low cost, and realize improvement of shock resistance, endurance, flexure resistance, mounting reliability etc. at the same time, without requiring fine adjustment etc. The invention is an electronic component 1 which has an element 2, a pair of terminal portions 4 which were disposed on the element 2, and an external covering material 5 which covers the a part of the terminal portions 4 and the element 2, and configured in such a manner that inclined portions 10 are disposed on corner portions of a bottom surface 9 and side surfaces of the external covering material 5, and the terminal portions 4 are protruded from corner portions where the inclined portions 10 and the bottom surface 9 of the external covering material intersect.
Abstract:
A flexible circuit board is provided, comprising a flexible substrate having an upper surface and a lower surface and a plurality of electrically conductive pads overlaid on an upper surface of the flexible substrate. Front ends of the electrically conductive pads do not reach a front edge of the flexible substrate and are separated from the front edge of the flexible substrate by a distance.
Abstract:
A manufacturing process for encapsulation and cutting memory cards, embodying a full-wafer circuit board substrate, whereon is distributed a plurality of sets of a number of chip modules assembled from passive component members, flash memory modules and control chips. A mold is then used to carry out full-wafer compression molding to seal the chip modules and passive component members onto the circuit board substrate, thereby forming a plurality of sets of memory cards having complete electric functionality. Grooves are formed between neighboring memory cards when carrying out the compression molding process, which enable direct chamfering of edges and corners of each of the memory cards after cutting, thereby eliminating the need for further finishing.
Abstract:
A circuit carrier includes a substrate with two oppositely arranged areas. The terminal contacts of a flat connector strip are arranged in the edge regions of the areas. A through contact is arranged under at least one of the terminal contacts with concealed electrical connection to the rear side of the terminal contact and the top side of the terminal contact exhibits an undisturbed morphology and planar surface.